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Abstract

We present some examples of holonomic systems for Feynman integrals associated with

Feynman diagrams by using integration algorithms for D-modules.

§ 1. Introduction

We consider Feynman integrals associated with Feynman diagrams (see e.g., [1]).

Microlocal analysis of Feynman integrals was initiated by M. Sato, T. Kawai, H.P. Stapp,

M. Kashiwara, T. Oshima, and others in the 1970’s. See e.g., [13], [7], [5], [6]. In their

investigation, the theory of microfunctions and (holonomic systems of) microdifferential

equations played a decisive role.

Recently, N. Honda and T. Kawai studied the geometry of Landau-Nakanishi surfaces

systematically and discovered interesting phenomena in the 2-dimensional space-time

in a series of papers, e.g., [2], [3], [4]. Inspired by their work, we will report on actual

computation of holonomic systems for Feynman integrals associated with very simple

Feynman diagrams by computer.

Let G be a connected Feynman graph (diagram); i.e., G consists of

• vertices V1, · · · , Vn′ ,

• oriented line segments L1, . . . , LN called internal lines,

• oriented half-lines Le
1, . . . , L

e
n called external lines.

The end-points of each internal line Ll are two distinct vertices, and each external line

has only one end-point, which coincides with one of the vertices.
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We associate ν-dimensional vector pr = (pr,0, pr,1, . . . , pr,ν−1) to each external line

Le
r (1 ≤ r ≤ n′); a ν-dimensional vector kl = (kl,0, kl,1, . . . , kl,ν−1) and a positive real

number ml to each internal line Ll (1 ≤ l ≤ N). For a vertex Vj and an internal or

external line Ll, the incidence number [j : l] is defined as follows:

[j : l] = 1 if Ll ends at Vj ,

[j : l] = −1 if Ll starts from Vj ,

[j : l] = 0 otherwise.

The Feynman integral associated with G is defined to be

FG(p1, . . . ,pn) =

∫
RνN

∏n′

j=1 δ
ν
(∑n

r=1[j : r]pr +
∑N

l=1[j : l]kl

)
∏N

l=1(k
2
l −m2

l +
√
−10)

N∏
l=1

dνkl.

Here δν denotes the ν-dimensional delta function,

k2
l := k2l,0 − k2l,1 − · · · − k2l,ν−1

is the Minkowski norm of kl = (kl,0, kl1, · · · , kl,ν−1), and dνkl is the ν-dimensional

volume element.

However, the Feynman integral is not necessarily well-defined since it involves the

product and the integral of generalized functions. In order to bypass this difficulty

without what is called renormalization or compactification of the domain of integration,

we consider it as a microfunction defined on a certain subset of the cotangent space

following the work by M. Sato and others mentioned above. This point of view has a

close connection with what is called the Landau-Nakanishi variety associated with G as

is explained in [6].

Our purpose is to compute a holonomic system which the Feynman integral satisfies,

in the two-dimensional space-time, by using algorithms and computer programs for

D-modules. We also compute the Landau-Nakanishi variety for comparison with the

holonomic system.

I would like to thank Professors Takahiro Kawai and Naofumi Honda for helpful sug-

gestions and comments. In actual computation, I made use of a computer algebra system

Risa/Asir [8] developed by Masayuki Noro, originally at Fujitsu Laboratories Limited.
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In particular, the integration of a D-module was computed by using a Risa/Asir library

file ‘nk restriction.rr’ coded by Hiromasa Nakayama; decomposition of a variety into

irreducible components was done by using a library file noro pd.rr coded by Noro.

§ 2. A recipe for computing a holonomic system for the Feynman integral

In what follows, we assume that for each vertex Vj , there exists a unique external

line, which we may assume to be Le
j , that ends at Vj and that no external line starts

from Vj . Then n = n′ holds and the Feynman integral is given by

(2.1) FG(p1, . . . ,pn) =

∫
RνN

∏n
j=1 δ

ν
(
pj +

∑N
l=1[j : l]kl

)
∏N

l=1(k
2
l −m2

l +
√
−10)

N∏
l=1

dνkl.

§ 2.1. Rewriting the Feynman integral

The delta factors of the integrand of the Feynman integral (2.1) correspond to the

linear equations (momentum preservation)

pj +
N∑
l=1

[j : l]kl = 0 (1 ≤ j ≤ n)

for indeterminates pj and kl which correspond to the vectors pj and kl. These equations

define an N -dimensional linear subspace of Rn+N , which is contained in the hyperplane

p1 + · · ·+ pn = 0 since
∑n

j=1[j : l] = 0.

Lemma 2.1. Let A be the n × N matrix whose (j, l)-element is [j : l]. Then the

rank of A is n− 1.

In view of this lemma, we can choose a set of indices

J = {l1, . . . , lN−n+1} ⊂ {1 . . . , N}

and integers alr and blj so that the system

pj +
N∑
l=1

[j : l]kl = 0 (1 ≤ j ≤ n)

of linear equations is equivalent to

n∑
j=1

pj = 0, kl − ψl(p1, . . . , pn−1, kl1 , . . . , klN−n+1) = 0 (l ∈ Jc)
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with

ψl(p1, . . . , pn−1, kl1 , . . . , klN−n+1
) =

n−1∑
r=1

alrpr +
N−n+1∑

j=1

bljklj

and that the (n−1)× (n−1)-matrix (alr) is non-singular. These data can be computed

by row operations on the matrix A augmented by t(p1, . . . , pn), which produce a matrix

with a row (0, . . . , 0, p1 + · · ·+ pn).

Then the Feynman integral is written in the form

FG(p1, . . . ,pn) =

∫
RNν

δ(p1 + · · ·+ pn)
∏
l∈Jc

δ(kl − ψl(p1, . . . ,pn−1,kl1 , . . . ,klN−n+1
))

×
N∏
l=1

(k2
l −m2

l +
√
−10)−1

N∏
l=1

dkl

= δ(p1 + · · ·+ pn)F̃G(p1, . . . ,pn−1)

with the amplitude function

F̃G(p1, . . . ,pn−1) =

∫
R(N−n+1)ν

∏
l∈J

(k2
l −m2

l +
√
−10)−1

×
∏
l∈Jc

(ψl(p1, . . . ,pn−1,kl1 , . . . ,klN−n+1)
2 −m2

l +
√
−10)−1

∏
l∈J

dkl.

Note that the functions FG and F̃G are invariant under the action of the Lorentz

group: Let T be a ν × ν matrix such that

tT

1 0 · · · 0

0−1 · · · 0

0 0 · · · −1

T =

1 0 · · · 0

0−1 · · · 0

0 0 · · · −1

 .

Then one has

FG(Tp1, . . . , Tpn−1, Tpn) = FG(p1, . . . ,pn−1,pn),

F̃G(Tp1, . . . , Tpn−1) = F̃G(p1, . . . ,pn−1).

§ 2.2. Holonomic systems for integrands

In general, since dkl (l ∈ J) and dψl (l ∈ Jc) are linearly independent, the integrand

Φ(p1, . . . ,pn−1,kl1 , . . . ,klN−n+1)

=
∏
l∈J

(k2
l −m2

l +
√
−10)−1

∏
l∈Jc

(ψl(p1, . . . ,pn−1,kl1 , . . . ,klN−n+1)
2 −m2

l +
√
−10)−1
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of the amplitude F̃G is well-defined as a hyperfunction on RN , represented as the bound-

ary value of the rational function

Φ̃(p1, . . . ,pn−1,kl1 , . . . ,klN−n+1
)

=
∏
l∈J

(k2
l −m2

l )
−1

∏
l∈Jc

(ψl(p1, . . . ,pn−1,kl1 , . . . ,klN−n+1
)2 −m2

l )
−1

defined on

{(p1, . . . ,pn−1,kl1 , . . . ,klN−n+1) ∈ CνN | Imk2
l > 0 (l ∈ J),

Imψl(p1, . . . ,pn−1,kl1 , . . . ,klN−n+1
)2 > 0 (l ∈ Jc)},

whose closure contains RνN in view of the linear independence above; here the assump-

tion ml > 0 is essential.

Let DνN be the ring of differential operators with polynomial coefficients in p1,

. . . , pn−1, kl1 , . . . , klN−n+1 , and BRνN the sheaf of hyperfunctions on RνN . Then the

annihilator (left ideal of DνN )

AnnDνN
Φ = {P ∈ DνN | PΦ = 0 in BRνN (RνN )}

of Φ coincides with the annihilator

AnnDνN Φ̃ = {P ∈ DνN | P Φ̃ = 0 as rational function}

of Φ̃ by virtue of the injectivity of the boundary map in the theory of hyperfunctions.

There exists a general algorithm to compute the annihilator of an arbitrary rational

function. However, since the denominator of Φ̃ is the product of polynomials whose

differentials are linearly independent at each point, the annihilator of Φ̃ is generated by

first order differential operators, which are much easier to compute.

§ 2.3. Landau-Nakanishi varieties for amplitudes

Let ur = (ur,0, ur,1, . . . , ur,ν−1) be a ν-dimensional vector and set

Λ(G) = {(p1, . . . ,pn−1,kl1 , . . . ,klN−n+1 ;u1, . . . ,un−1;α1, . . . , αN )

∈ RνN × Rν(n−1) × RN |
αlj (k

2
lj −m2

lj ) = 0 (1 ≤ j ≤ N − n+ 1), αl(ψ
2
l −m2

l ) = 0 (l ∈ Jc),

αljklj +
∑
l∈Jc

αlbljψl = 0 (1 ≤ j ≤ N − n+ 1),

ur =
∑
l∈Jc

αlalrψl (1 ≤ r ≤ n− 1), αl ≥ 0 (1 ≤ l ≤ N)}
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and

Λ+(G) = {(p1, . . . ,pn−1,kl1 , . . . ,klN−n+1
;u1, . . . ,un−1;α1, . . . , αN )

∈ RνN × Rν(n−1) × RN |
αlj (k

2
lj −m2

lj ) = 0 (1 ≤ j ≤ N − n+ 1), αl(ψ
2
l −m2

l ) = 0 (l ∈ Jc),

αljklj +
∑
l∈Jc

αlbljψl = 0 (1 ≤ j ≤ N − n+ 1),

ur =
∑
l∈Jc

αlalrψl (1 ≤ r ≤ n− 1), αl > 0 (1 ≤ l ≤ N)}.

Let
√
−1T ∗Rν(n−1) = {(p1, . . . ,pn−1;

√
−1u1dp1 + · · ·+

√
−1un−1dpn−1)}

be the (purely imaginary) cotangent bundle of Rν(n−1) and let ϖ be the natural pro-

jection of Λ(G) to
√
−1T ∗Rν(n−1). Here we set

ujdpj = uj,0dpj,0 − uj,1dpj,1 − · · · − uj,ν−1dpj,ν−1

in accordance with the Minkowski norm.

The amplitude F̃G is well-defined as a microfunction on the set
√
−1T ∗Rν(n−1) \ϖ

(
Λ(G) \ Λ+(G)

)
and its support is contained in ϖ(Λ+(G)). This fact follows from the theory of integra-

tion of microfunctions (see e.g., Chapter 3 of [6]) and the non-singularity of the matrix

(alr).

In practice, we can compute the complexifications ΛC(G) and ΛC
+(G) of Λ(G) and

Λ+(G) respectively allowing klj and αl to be complex and replacing the condition αl > 0

by αl ̸= 0. This can be done by using Gröbner bases in the polynomial ring.

§ 2.4. Holonomic systems for amplitudes

Let M = DνN/AnnDνNΦ be the holonomic system for the integrand Φ of the Feyn-

man integral (2.1). Let us denote by Dν(n−1) the ring of differential operators with

polynomial coefficients in the variables p1, . . . ,pn−1. Then the integral
∫
ϖC
M of M

along the fibers of the projection ϖC : CνN → Cν(n−1) is defined to be the left Dν(n−1)-

module ∫
ϖC

M =M/(∂kl1
M + · · ·+ ∂klN−n+1

M)

with the notation

∂kl
M = ∂kl,0

M + ∂kl,1
M + · · ·+ ∂kl,ν−1

M.

This is a holonomic Dν(n−1)-module since M is holonomic. Moreover, there is an

algorithm for computing
∫
ϖC
M given a presentation of M (see [11], [12], [9]).
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Theorem 2.2. The Feynman amplitude F̃G satisfies the system
∫
ϖC
M of linear

partial differential equations as a microfunction on the set

√
−1T ∗Rν(n−1) \ϖ

(
Λ(G) \ Λ+(G)

)
.

In order to prove this theorem, we change the notation in the sequel and set x =

(x′, x′′) with x′ = (x1, . . . , xn−d) and x′′ = (xn−d+1, . . . , xn) for the coordinate of the

base space Rn, and likewise ξ = (ξ′, ξ′′) for the cotangential coordinate. Let CRn be the

sheaf on
√
−1T ∗Rn of microfunctions (see [14], [6]). Let

ϖ :
√
−1T ∗Rn ∋ (x,

√
−1ξdx) 7−→ (x′,

√
−1ξ′dx′) ∈

√
−1T ∗Rn−d

be the projection and W be an open set of
√
−1T ∗Rn−d. Let us denote by FW the set

of the microfunctions u on ϖ−1(W ) such that the restriction of ϖ to the set

suppu ∩ϖ−1(W ) ∩ {(x,
√
−1ξ′dx′) | ξ′ ∈ Rd}

is proper.

Then for any u ∈ FW , the integral
∫
Rd u(x) dx

′′ is well-defined as a microfunction on

W . We adopt a concrete definition by using defining functions following the arguments

in Chapter 3 of [6].

Proposition 2.3. Let u be an element of FW . Then the integral
∫
Rd ∂xju(x) dx

′′

vanishes as a microfunction on W for any j such that n− d+ 1 ≤ j ≤ n.

Proof. Let p′ = (x′0,
√
−1ξ′0dx

′) be a point of W . We may assume that W is a

sufficiently small neighborhood of p′. If the support of an element of FW is disjoint

from {(x,
√
−1ξ′dx′) | ξ′ ∈ Rd}, then its integral vanishes on W in view of the theory

of integration of microfunctions. Hence we may assume that u is the spectrum of the

hyperfunction defined as the boundary value F (x+
√
−1V 0) of a holomorphic function

F (z) on (U ×Rd) +
√
−1V 0, where U is an open neighborhood of x′0 and V is an open

convex cone of Rn with vertex at the origin such that V ′ = V ∩ (Rn−d × {0}) is not

empty. By the assumption, there exists R > 0 such that F (z) continues analytically to

U × (Rd \ (−R/2, R/2)d) if we take U to be small enough.

Then
∫
Rd ∂xnu(x) dx

′′ is the spectrum of the boundary value G(x′ +
√
−1V ′0) of

G(z′) =

∫
[−R,R]d

∂xnF (z
′, x′′) dx′′

=

∫
[−R,R]d−1

F (z′, xn−d+1, . . . , xn−1, R) dxn−d+1 · · · dxn−1

−
∫
[−R,R]d−1

F (z′, xn−d+1, . . . , xn−1,−R) dxn−d+1 · · · dxn−1.
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Hence G(z′) is real analytic on U . This implies that u(x) = sp(F (x+
√
−1V 0)) = 0 on

a neighborhood of p′.

Now let Dn and Dn−d be the rings of differential operators with polynomial coeffi-

cients in x and in x′ respectively. Theorem 2.2 is a special case of the following theorem,

which follows immediately from the proposition above:

Theorem 2.4. Let u be an element of FW and let I be a left ideal of Dn such that

Pu = 0 as microfunction on ϖ−1(W ) for any P ∈ I. Let Q be an element of

(∂xn−d+1
Dn + · · ·+ ∂xnDn + I) ∩Dn−d.

Then Q annihilates
∫
Rn−d u(x) dx

′′ as microfunction on W . More generally, the inte-

gration induces a linear map

HomDn(M,FW ) −→ HomDn−d
(M ′,Γ(W, CRn−d))

with M = Dn/I and M ′ =M/(∂xn−d+1
M + · · ·+ ∂xnM).

§ 3. Some examples in the two-dimensional space-time

In the sequel, we set ν = 2 and consider Feynman integrals associated with some

simple Feynman diagrams. In general, for a two-dimensional vector p = (p0, p1), we

denote p2 = p20 − p21 for the Minkowski norm and dp = dp0dp1 for the volume element.

In actual computation in the sequel, we used a library file nk restriction.rr of

Risa/Asir [8] for integration of D-modules, and noro pd.rr for decomposition of char-

acteristic varieties into irreducible components.

We remark that holonomic systems for Cutkosky-type phase space integrals associ-

ated with the following Feynman diagrams are presented in [10].

Example 3.1. Let us study the Feynman diagram G below:

p1 p2

k1

k2

The associated Feynman integral is written in the form

FG(p1,p2) =

∫
R4

δ(p1 − k1 − k2)δ(−p2 + k1 + k2)

× (k2
1 −m2

1 +
√
−10)−1(k2

2 −m2
2 +

√
−10)−1 dk1dk2

= δ(p1 − p2)F̃G(p1)



Holonomic systems for Feynman integrals 9

with the amplitude

F̃G(p1) =

∫
R2

(k2
1 −m2

1 +
√
−10)−1((p1 − k1)

2 −m2
2 +

√
−10)−1 dk1.

The amplitude F̃G(p1) is well-defined as a microfunction on
√
−1T ∗R2 \ R2, i.e.,

the whole cotangent bundle with the zero section removed. In other words, F̃G(p1) is

well-defined as a section of the sheaf BR2/AR2 on R2 with AR2 being the sheaf of real

analytic functions.

By the integration algorithm for D-modules, we know that F̃G(p1) satisfies a holo-

nomic system M = D2/I with the left ideal I generated by three operators

p11∂p10 + p10∂p11 ,

(p10 −m1 −m2)(p10 −m1 +m2)(p10 +m1 −m2)(p10 +m1 +m2)∂p10

+ p11p10(2p
2
10 − p211 − 2m2

1 − 2m2
2)∂p11 + 2p310 + (−2p211 − 2m2

1 − 2m2
2)p10,

(p210 − p211 − (m1 +m2)
2)(p210 − p211 − (m1 −m2)

2)∂p11

− 2p11p
2
10 + 2p311 + (2m2

1 + 2m2
2)p11.

The characteristic variety of M is

Char(M) = {(p10, p11;
√
−1(u10dp10 + u11dp11) | u10 = u11 = 0}

∪ {p210 − p211 − (m1 +m2)
2 = u11p10 + u10p11 = 0}

∪ {p210 − p211 − (m1 −m2)
2 = u11p10 + u10p11 = 0}

with each component of multiplicity one if m1 ̸= m2 and

Char(M) = {(p10, p11;
√
−1(u10dp10 + u11dp11) | u10 = u11 = 0}

∪ {p210 − p211 − 4m2 = u11p10 + u10p11 = 0}
∪ {p10 − p11 = u10 + u11 = 0} ∪ {p10 + p11 = u10 − u11 = 0}
∪ {p10 = p11 = 0}

with each component of multiplicity one if m1 = m2 = m.

In view of the invariance under Lorentz transformations, let us set p1 = (x, 0) with

x ̸= 0. Then F̃G(x, 0) satisfies

{(x−m1 −m2)(x−m1 +m2)(x+m1 −m2)(x+m1 +m2)∂x

+ 2x(x2 −m2
1 −m2

2)}F̃G(x, 0) = 0.

Hence the support of the microfunction F̃G(x, 0) is contained in the set

{(x;
√
−1udx) | x = ±(m1 +m2),±(m1 −m2)}
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and one has, for example

F̃G((x, 0)) = C(x−m1 +m2)
−1/2(x+m1 −m2)

−1/2

× (x+m1 +m2)
−1/2(x−m1 −m2 +

√
−10)−1/2

with a constant C as a microfunction at (m1 +m2;
√
−1dx) if m1 ̸= m2.

If m1 = m2 = m, then the support of F̃G((x, 0)) is contained in {x = 0,±2m} and

one has

F̃G((x, 0)) = Cx−1(x+ 2m)−1/2(x− 2m+
√
−10)−1/2

at (2m,
√
−1dx).

Example 3.2. The Feynman integral associated with the graph G below

p1 p2

k1

k3

k2

is given by

FG(p1,p2) = δ(p1 − p2)F̃G(p1)

with

F̃G(p1) =

∫
R4

(k2
1 −m2

1 +
√
−10)−1(k2

2 −m2
2 +

√
−10)−1

× ((p1 − k1 − k2)
2 −m2

3 +
√
−10)−1 dk1dk2.

We can confirm that F̃G(p1) is well-defined as a microfunction on
√
−1T ∗R2 \ R2

and its support (singularity spectrum) is contained in

{p210 − p211 − (−m1 +m2 +m3)
2 = u11p10 + u10p11 = 0}

∪ {p210 − p211 − (m1 −m2 +m3)
2 = u11p10 + u10p11 = 0}

∪ {p210 − p211 − (m1 +m2 −m3)
2 = u11p10 + u10p11 = 0}

∪ {p210 − p211 − (m1 +m2 +m3)
2 = u11p10 + u10p11 = 0}

for generic m1,m2,m3.

We compute holonomic systems for F̃G((x, 0)) by assigning some special values to

m1,m2,m3 since the computation for general m1,m2,m3 (as parameters) is intractable.
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First let us set m1 = 1, m2 = 2, m3 = 4 so that (−m1+m2+m3)
2, (m1−m2+m3)

2,

(m1+m2−m3)
2 are distinct. Then F̃G((x, 0)) is annihilated by the differential operator

P = 30x(x− 1)(x+ 1)(x− 3)(x+ 3)(x− 5)(x+ 5)(x− 7)(x+ 7)∂3x

+ (−2x12 + 191x10 − 5340x8 + 35954x6 + 273082x4 − 2071305x2 + 661500)∂2x

+ (−10x11 + 675x9 − 12108x7 + 15454x5 + 936462x3 − 2692665x)∂x

− 8x10 + 372x8 − 3300x6 − 36028x4 + 457932x2 − 356760.

The singular points x = 0,±1,±3,±5,±7 of P are all regular and the indicial equations

are all s2(s − 1). This implies, e.g., F̃G((x, 0)) = U log(x + i0) at (1,
√
−1dx) with a

microdifferential operator U of order zero by virtue of Lemma 4.2.6 (p. 425) of Sato-

Kawai-Kashiwara [14].

Next set m1 = m2 = m3 = 1. Then F̃G((x, 0)) is annihilated by

Q = x(x− 1)(x+ 1)(x− 3)(x+ 3)∂2x + (5x4 − 30x2 + 9)∂x + 4x3 − 12x.

The points 0,±1,±3 are regular singular points of Q and its indicial equations at these

points are all s2. This implies F̃G((x, 0)) = U log(x− 1 + i0) e.g., at (1,
√
−1dx) with a

microdifferential operator U of order zero.

Example 3.3. The Feynman integral associated with the graph G = T1 below

p1 p2

p3

k1

k2

k3

is given by

FG(p1,p2,p3) = δ(p1 − p2 − p3)F̃G(p1,p2)

with

F̃G(p1,p2) =

∫
R2

(k2
1 −m2

1 +
√
−10)−1

× ((p1 − k1)
2 −m2

2 +
√
−10)−1)−1((p2 − k1)

2 −m2
3 +

√
−10)−1 dk1.

Computation for general m1,m2,m3 is intractable. So let us set m1 = m2 = m3 =

1 in the sequel. In this situation, the Landau-Nakanishi variety was investigated by

N. Honda and T. Kawai ([2],[3]) in detail.
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The amplitude F̃G((x, 0), (y, z)) is well-defined on

{(x, y, z;
√
−1(udx+ vdy + wdz) | (u, v, w) ̸= (0, 0, 0)}

\
(
{(x− y)2 − z2 − 4 = wx− wy + vz = u+ v = 0}

∪ {x− y = z = u+ v = 0} ∪ {y2 − z2 − 4 = wy − vz = u = 0}

∪ {x2 − 4 = v = w = 0} ∪ {x = v = w = 0} ∪ {y = z = u = 0}
)

as a microfunction and its support is contained in

√
−1T ∗

{f=0}R
3 ∪

√
−1T ∗

{x=y=z=0}R
3 ∪

√
−1T ∗

{x=y2−z2−4=0}R
3

with

f = (y − z)(y + z)x2 − 2(y − z)(y + z)yx+ (y − z)2(y + z)2 + 4z2,

where we denote by T ∗
SR3 the closure of the conormal bundle of the regular part of a

real analytic set S of R3.

We can compute a holonomic system M = D3/I for F̃G((x, 0), (y, z)), which is too

complicated to show here. The characteristic variety of M is

C3 ∪ T ∗
{f=0}C

3 ∪ T ∗
{x=f=0}C

3 ∪ T ∗
{(x−y)2−z2−4=0}C

3 ∪ T ∗
{y2−z2−4=0}C

3 ∪ T ∗
{x−y−z=0}C

3

∪ T ∗
{x−y+z=0}C

3 ∪ T ∗
{y−z=0}C

3 ∪ T ∗
{y+z=0}C

3 ∪ T ∗
{x=0}C

3 ∪ T ∗
{x−2=0}C

3 ∪ T ∗
{x+2=0}C

3

∪ T ∗
{x=y2−z2−4=0}C

3 ∪ T ∗
{x=y−z=0}C

3 ∪ T ∗
{x=y+z=0}C

3 ∪ T ∗
{x−y=z=0}C

3 ∪ T ∗
{y=z=0}C

3

∪ T ∗
{x=y=z=0}C

3,

where we denote by T ∗
ZC3 the closure of the conormal bundle of the regular part of an

analytic set Z of C3.

In order to guess the multiplicity and the exponent (order) of F̃G along the conormal

bundle of f = 0 at a non-singular point, we compute the restriction of the holonomic

system M to a generic line. For example, we can take L = {(x, y, z) | y = 1, z = 2}.
The restriction of f to L is −3x2+6x+25 = −(3x2−6x−25), which have two real roots

α and 2 − α. Then F (x) := F̃G((x, 0), (1, 2)) is annihilated by a 5th order differential

operator

P = 147316552073926635122538062595769976812320x(x− 3)

× (x− 2)(x+ 1)(x+ 2)(x2 − 2x− 7)(3x2 − 6x− 25)∂5x

+ (2871432833964372040345167998282243508711x19 + · · · )∂4x + · · · .

The indicial polynomial at α is s(s− 1)(s− 2)(s− 3)(s+ 1). Hence we have

F̃G((x, 0), (1, 2)) = U(x− α+
√
−10)−1

at (α,
√
−1dx) with a microdifferential operator U of order 0.
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§ 4. Landau-Nakanishi surface associated with T1 for general m1,m2,m3

Let F̃G((x, 0), (y, z)) be the amplitude function associated with the triangle diagram

T1 with general m1, m2, m3. As a microfunction, the support of F̃G((x, 0), (y, z)) is

contained in, outside of x = 0, the conormal bundle of the (Landau-Nakanishi) surface

f(x, y, z) = 0 with

f =(y2 − z2)x4 + (−2y3 + (2z2 − 2m2
1 + 2m2

3)y)x
3

+ (y4 + (−2z2 + 4m2
1 − 2m2

2 − 2m2
3)y

2 + z4

+ (2m2
2 + 2m2

3)z
2 +m4

1 − 2m2
3m

2
1 +m4

3)x
2

+ ((−2m2
1 + 2m2

2)y
3 + ((2m2

1 − 2m2
2)z

2 − 2m4
1

+ (2m2
2 + 2m2

3)m
2
1 − 2m2

3m
2
2)y)x

+ (m4
1 − 2m2

2m
2
1 +m4

2)y
2 + (−m4

1 + 2m2
2m

2
1 −m4

2)z
2.

By the coordinate transformation (y + z, y − z) → (y, z), f becomes

f = zyx4 − (y + z)(zy +m2
1 −m2

3)x
3

+ {(z2 +m2
1)y

2 + 2(m2
1 −m2

2 −m2
3)zy +m2

1z
2 + (m2

1 −m2
3)

2}x2

− (m1 −m2)(m1 +m2)(y + z)(zy +m2
1 −m2

3)x+ (m1 −m2)
2(m1 +m2)

2zy.

The set of the singular points of f = 0 is given by

{f = fx = fy = fz = 0} = {y − z = −zx2 + (z2 +m2
1 −m2

3)x+ (−m2
1 +m2

2)z = 0}
∪ {x = m1 −m2 = 0}.

For example, if m1 = 1, m2 = 2, m3 = 3 (probably a generic case), then the local

b-function bf,p(s) of f at

p = ±(1, 1, 1), ±(1,−2,−2), ±(3,−1,−1), ±(3, 2, 2)

is (s+ 1)2(2s+ 3), which is the same as that of the Whitney umbrella x2 − y2z = 0.

On the other hand, if m1 = 2, m2 = m3 = 1, then the local b-function bf,p(s) of f at

p = ±(
√
3,
√
3/2,

√
3/2) is (s+1)3(2s+3) in contrast to the b-function (s+1)2(2s+3)

of the Whitney umbrella. This implies that the singularity at p of f is not analytically

equivalent to the Whitney umbrella. The local b-functions above were computed by

using a library file nn ndbf.rr of Risa/Asir [8].
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