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An algorithmic study on the integration of holonomic

hyperfunctions — oscillatory integrals and a phase

space integral associated with a Feynman diagram

By

Toshinori Oaku ∗

Abstract

Let u(x, y) be a generalized function which satisfies a holonomic system M of linear

differential equations with polynomial coefficients. Suppose that u(x, y) is integrable with

respect to x and let v(y) be its integral. We give a sufficient condition for v(y) to satisfy the

D-module theoretic integration module of M , which can be computed algorithmically. We

present some examples related to oscillatory integrals and Cutkosky-type phase space integrals

associated with Feynman diagrams

§ 1. Introduction

In this paper, we call a distribution, or more generally, a hyperfunction holonomic

for short, if it satisfies a holonomic system of linear differential equations with polynomial

coefficients. The integration of a holonomic function with respect to some of its variables

is again holonomic if the integrand is ‘rapidly decreasing’ with respect to the integration

variables. Moreover, a holonomic system for the integral is defined naturally as a D-

module and is computable, at least in theory, under this condition.

First we give a sufficient condition for the integral to be well-defined and to satisfy

the D-module theoretic integration module, or the direct image. This allows us to treat,

e.g., the oscillatory integral with a polynomial phase and a holonomic distribution as

the amplitude function which is ‘rapidly decreasing’ with respect to the integration

variables.
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Then we give some examples of computation of holonomic systems for such oscil-

latory integrals and their Fourier transforms, as well as what are called Cutkosky-type

phase space integrals associated with Feynman diagrams.

The author would like to thank Professors Takahiro Kawai and Naofumi Honda

for valuable suggestions on the phase space integral. All examples in this article were

computed by using a computer algebra system Risa/Asir [7]. Especially, the author

would like to acknowledge the assistance of Professor Masayuki Noro in computing the

characteristic cycle associated with the phase space integral of Example 5.4.

§ 2. Integration of generalized functions

Let ϖ : Rn+d ∋ (x, y) 7→ y ∈ Rd be the projection with the standard coordinates

x = (x1, . . . , xn) of Rn and y = (y1, . . . , yd) of Rd.

Then the integration along the fibers of ϖ gives a sheaf homomorphism ϖ!BRn+d →
BRd , and hence, in particular, a homomorphism

Γ(U,ϖ!BRn+d) −→ Γ(U,BRd)

for an open set U of Rd. Here BRn stands for the sheaf of hyperfunctions on Rn and ϖ!

the sheaf-theoretic direct image with proper supports.

For example, for a real polynomial f in x, and a distribution φ on Rn, we are

interested in the integrals

I(f, φ)(t) =

∫
Rn

δ(t− f(x))φ(x) dx, Î(f, φ)(t) =

∫
Rn

eitf(x)φ(x) dx.

I(f, φ) and Î(f, φ) are related by Fourier transformation. If φ is a probability density

function, then I(f, φ) is that of the random variable f(x), and Î(f, φ) is the character-

istic function. We do not assume that φ has a compact support. Hence the integrands

do not belong to Γ(R, ϖ!BRn+1) in general.

Definition 2.1. We call a pair of classes (Fn,d,F0,d) adapted to the projection

ϖ : Rn+d → Rd if the following conditions are satisfied:

1. Fn,d is a left module over the ring Dn+d = C⟨x, y, ∂x, ∂y⟩ of differential operators

with polynomial coefficients in the variables (x, y) with ∂x = (∂/∂x1, . . . , ∂/∂xn).

2. F0,d is a left module over Dd = C⟨y, ∂y⟩.

3. There exists a C-linear map ϖ∗ : Fn,d −→ F0,d.

4. For any u ∈ Fn,d, P ∈ Dd, and j = 1, . . . , n, one has

Pϖ∗(u) = ϖ∗(Pu), ϖ∗(∂xju) = 0.
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The first example of a pair adapted to ϖ is Γ(U,ϖ!BRn+d) and Γ(U,BRd) with

ϖ∗(u(x, y)) =
∫
Rn u(x, y) dy for u ∈ Γ(U,ϖ!BRn+d).

As the second example, let SS ′(Rn × Rd) be the subspace of S ′(Rn+d) consisting

of distributions of the form

(2.1) u(x, y) =

m∑
j=1

uj(x)vj(x, y) (m ∈ N, uj ∈ S(Rn), vj ∈ S ′(Rn+d)),

where S and S ′ denote the space of rapidly decreasing functions and that of tempered

distributions respectively. Then SS ′(Rn × Rd) is a left Dn+d-submodule of S ′(Rn+d).

As a special case d = 0, we denote by SS ′(Rn) the subspace of S ′(Rn) consisting

of distributions of the form

u(x) =
m∑
j=1

uj(x)vj(x) (m ∈ N, uj ∈ S(Rn), vj ∈ S ′(Rn)).

For a distribution u(x, y) in SS ′(Rn×Rd), the integral ϖ∗(u(x, y)) =
∫
Rn u(x, y) dx

is defined by the pairing⟨∫
Rn

u(x, y) dx, φ(y)

⟩
=

m∑
j=1

⟨vj(x, y), uj(x)φ(y)⟩ (∀φ ∈ S(Rd)).

It does not depend on the choice of expression (2.1). In fact, assume u(x, y) = 0 in (2.1)

and take χ(x) which belongs to the space C∞0 (Rn) of infinitely differentiable functions

with compact support such that χ(x) = 1 if |x| ≤ 1. Then for an arbitrary constant

r > 0, we have an equality

0 =

⟨
m∑
j=1

uj(x)vj(x, y), χ(x/r)φ(y)

⟩
=

m∑
j=1

⟨vj(x, y), χ(x/r)uj(x)φ(y)⟩

for any φ ∈ S(Rd). Since χ(x/r)uj(x)φ(y) converges to uj(x)φ(y) in S(Rn+d) as r → ∞,

we get
m∑
j=1

⟨vj(x, y), uj(x)φ(y)⟩ = 0.

Proposition 2.2 (differentiation under the integral sign). Suppose that u(x, y)

belongs to Γ(U,ϖ!BRn+d) with an open set U of Rd, or else to SS ′(Rn × Rd). Then

P (y, ∂y)

∫
Rn

u(x, y) dx =

∫
Rn

P (y, ∂y)u(x, y) dx

holds for any P = P (y, ∂y) ∈ Dd.
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Proof. First we suppose u(x, y) belongs to SS ′(Rn × Rd) and is defined by

u(x, y) =
m∑
j=1

uj(x)vj(x, y)

with uj ∈ S(Rn) and vj ∈ S ′(Rn+d). Then for any φ ∈ S(Rd), we have⟨
∂yi

∫
Rn

u(x, y) dx, φ(y)

⟩
= −

⟨∫
Rn

u(x, y) dx, ∂yiφ(y)

⟩
= −

m∑
j=1

⟨vj(x, y), uj(x)∂yiφ(y)⟩ = −
m∑
j=1

⟨vj(x, y), ∂yi(uj(x)φ(y))⟩

=

m∑
j=1

⟨∂yivj(x, y), uj(x)φ(y)⟩ =
⟨∫

Rn

∂yiu(x, y) dx, φ(y)

⟩
and ⟨

yi

∫
Rn

u(x, y) dx, φ(y)

⟩
=

m∑
j=1

⟨vj(x, y), yiuj(x)φ(y)⟩

=

m∑
j=1

⟨yivj(x, y), uj(x)φ(y)⟩ =
⟨∫

Rn

yiu(x, y) dx, φ(y)

⟩
.

Next, let us assume u(x, y) to belong to Γ(U,ϖ!BRn+d). Moreover, by induction

on n, we may assume n = 1. Since the statement is local in U , we may suppose that

U is convex and the support of u(x, y) is contained in [−R/2, R/2] × U with R > 0.

Then there exists a hyperfunction v(x, y) on R×U such that ∂xv(x, y) = u(x, y) whose

singular spectrum S.S. v(x, y) does not contain the points (±R, y;±
√
−1dx) with y ∈ U

in the purely imaginary cotangent bundle
√
−1T ∗(R × Rd). See Proposision 3.2.1 and

subsequent arguments in Kashiwara-Kawai-Kimura [3] on integration of hyperfunctions.

This implies that x is a real analytic parameter of v(x, y) on a neighborhood of {±R}×U .

Hence v(±R, y) are well-defined as hyperfunctions on U and one has∫ ∞
−∞

u(x, y) dx = v(R, y)− v(−R, y)

by the definition. One also has∫ ∞
−∞

P (y, ∂y)u(x, y) dx = P (y, ∂y)v(R, y)− P (y, ∂y)v(−R, y)

for any P ∈ Dd since ∂xP (y, ∂y)v(x, y) = P (y, ∂y)u(x, y). Thus we get

P (y, ∂y)

∫ ∞
−∞

u(x, y) dx = P (y, ∂y)v(R, y)− P (y, ∂y)v(−R, y)

=

∫ ∞
−∞

P (y, ∂y)u(x, y) dx.
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Proposition 2.3. Suppose that u(x, y) belongs to Γ(U,ϖ!BRn+d) with an open

set U of Rd, or else to SS ′(Rn × Rd). Then one has∫
Rn

∂xju(x, y) dx = 0 (j = 1, . . . , n).

Proof. First suppose that u(x, y) belongs to SS ′(Rn × Rd). We may assume,

without loss of generality, that u(x, y) = v(x)w(x, y) with v ∈ S(Rn) and w ∈ S ′(Rn+d).

Then for any φ ∈ S(Rn) we have⟨∫
Rn

∂xj (v(x)w(x, y)) dx, φ(y)

⟩
=

⟨∫
Rn

(∂xjv(x))w(x, y) dx, φ(y)

⟩
+

⟨∫
Rn

v(x)(∂xjw(x, y)) dx, φ(y)

⟩
= ⟨w(x, y), (∂xjv(x))φ(y)⟩+ ⟨∂xjw(x, y), v(x)φ(y)⟩
= ⟨w(x, y), (∂xjv(x))φ(y)⟩ − ⟨w(x, y), ∂xj (v(x)φ(y))⟩ = 0.

Next, let us assume that u(x, y) belongs to Γ(U,ϖ!BRn+d). We may also assume

that U is convex, n = 1, and the support of u(x, y) is contained in [−R/2, R/2] × U

with R > 0. Then by the definition of the integration, we have∫ ∞
−∞

∂xu(x, y) dx = u(R, y)− u(−R, y) = 0.

Hence the pairs (Γ(U,ϖ!BRn+d),Γ(U,BRd)) and (SS ′(Rn×Rd), S ′(Rd)) are adapted

to the projection ϖ of Rn+d to Rd.

§ 3. Integration of D-modules

Let x = (x1, . . . , xn) and y = (y1, . . . , yd) be (complex or real) variables. We set

X = Cn+d and Y = Cd and let ϖC : X ∋ (x, y) 7−→ y ∈ Y be the projection. We

denote by DX = Dn+d the ring of differential operators in the variables (x, y), and by

DY = Dd that in the variables y. The module

DY←X := DX/(∂x1DX + · · ·+ ∂xnDX)

has a structure of (DY , DX)-bimodule. The integral of a left DX -module M along the

fibers of ϖC, or the direct image by ϖC is defined to be the left DY -module

(ϖC)∗M := DY←X ⊗DX
M =M/(∂x1M + · · ·+ ∂xnM).
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For an element u of M , let [u] be its residue class in (ϖC)∗M . If M is generated by

u1, . . . , ur over DX , then (ϖC)∗M is generated by the set {xα[uj ] | 1 ≤ j ≤ r, α ∈ Nn}
over DY .

Let (Fn,d,Fn) be a pair adapted to ϖ. Let h be a DX -homomorphism from M to

Fn,d. Let us define a C-linear map h′ from M to Fd by

h′(u) = ϖ∗(h(u)) (∀u ∈M),

which is DY -linear and we have

∂x1M + · · ·+ ∂xnM ⊂ kerh′.

Hence h′ induces a DY -homomorphism

ϖ∗(h) : (ϖC)∗M −→ Fd.

In conclusion, we have defined a C-linear map

ϖ∗ : HomDX
(M,Fn,d) −→ HomDY

((ϖC)∗M,Fd).

If M is a holonomic DX -module, then (ϖC)∗M is a holonomic DY -module. An

algorithm to compute (ϖC)∗M , which works at least ifM is holonomic, was given in [9],

[10]; see also [8]. For practical computation, we use a library file nk restriction.rr

by Hiromasa Nakayama for the computer algebra system Risa/Asir [7].

§ 4. Oscillatory integrals

Let f(x) be a real polynomial in the real variables x = (x1, . . . , xn). Suppose that

φ(x) belongs to SS ′(Rn). Let t and τ be real variables. Since both δ(t− f(x))φ(x) and

eitf(x)φ(x) belong to SS ′(Rn
x × Rt), the integrals

F (t) = I(f, φ)(t) =

∫
Rn

δ(t− f(x))φ(x) dx, G(t) = Î(f, φ)(t) =

∫
Rn

eitf(x)φ(x) dx

are well-defined as elements of S ′(R). The integral Î(f,ϖ)(t) is called the oscillatory

integral with the phase function f(x) and the amplitude function φ(x), which is usually

assumed to belong to C∞0 (Rn) in the literature (see e.g., [5]).

Proposition 4.1. Define F (t) and G(τ) as above with φ ∈ SS ′(Rn) and f ∈
R[x]. Then F (t) and G(τ) are related by

G(τ) = F̂ (τ) :=

∫ ∞
−∞

eitτF (t) dt, F (t) =
1

2π

∫ ∞
−∞

e−itτG(τ) dτ,

where the integrals make sense as Fourier transformation in S ′(R). Moreover G(τ)

belongs to C∞(R).



Integration of holonomic hyperfunctions 7

Proof. We may assume that φ(x) = ψ(x)u(x) with ψ ∈ S(Rn) and u ∈ S ′(Rn).

Then by the definition of the integral of an element of SS ′(Rn
x × Rt), we get, for any

χ ∈ S(R),

⟨F̂ , χ⟩ =
⟨∫

Rn

ψ(x)δ(t− f(x))u(x) dx, χ̂

⟩
= ⟨δ(t− f(x))u(x), ψ(x)χ̂(t)⟩

= ⟨δ(t)u(x), ψ(x)χ̂(t+ f(x))⟩ = ⟨u(x), ψ(x)χ̂(f(x))⟩x

=

⟨
u(x), ψ(x)

∫ ∞
−∞

eitf(x)χ(t) dt

⟩
x

=

∫ ∞
−∞

⟨
u(x), ψ(x)eitf(x)χ(t)

⟩
x
dt =

∫ ∞
−∞

⟨
u(x), ψ(x)eitf(x)

⟩
x
χ(t) dt

in view of the lemma below. This implies

F̂ (τ) =
⟨
u(x), ψ(x)eiτf(x)

⟩
x
=

∫
Rn

ψ(x)eiτf(x)u(x) dx = G(τ)

and that G(τ) belongs to C∞(R).

Lemma 4.2. Assume that f(x) is a real polynomial in x, χ belongs to S(R),
and that ψ belongs to S(Rn). Then

ψ(x)

∫ ∞
−∞

eitf(x)χ(t) dt = lim
R→∞

lim
N→∞

R

N

N−1∑
k=−N

ψ(x) exp
(
i
Rk

N
f(x)

)
χ
(Rk
N

)
holds in the topology of S(Rn).

Proof. Since it is easy to see that

ψ(x)

∫ ∞
−∞

eitf(x)χ(t) dt = ψ(x) lim
R→∞

∫ R

−R
eitf(x)χ(t) dt

holds in the topology of S(Rn), let us show

ψ(x)

∫ R

−R
eitf(x)χ(t) dt = lim

N→∞

R

N

N−1∑
k=−N

ψ(x) exp
(
i
Rk

N
f(x)

)
χ
(Rk
N

)
in S(Rn). For integers k, ν with −N ≤ k ≤ N − 1 and ν ≥ 0, there exist tk, t

′
k in the

interval
[
R
N k,

R
N (k + 1)

]
, which depend on x, such that

∫ R

−R
eitf(x)tνχ(t) dt =

R

N

N−1∑
k=−N

{
cos(tkf(x))t

ν
kχ(tk) + i sin(t′kf(x))t

′
k
ν
χ(t′k)

}
.
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Hence ∣∣∣∣∣
∫ R

−R
eitf(x)tνχ(t) dt− R

N

N−1∑
k=−N

exp
(
i
Rk

N
f(x)

)(Rk
N

)ν

χ
(Rk
N

)∣∣∣∣∣
≤ R

N

N−1∑
k=−N

∣∣∣∣ {cos(tkf(x))tνkχ(tk) + i sin(t′kf(x))t
′
k
ν
χ(t′k)

}
− exp

(
i
Rk

N
f(x)

)(Rk
N

)ν

χ
(Rk
N

)∣∣∣∣
≤ R

N

N−1∑
k=−N

C(|f(x)|+ 1)max

{∣∣∣∣tk − Rk

N

∣∣∣∣ , ∣∣∣∣t′k − Rk

N

∣∣∣∣}

≤ 2R2

N
C(|f(x)|+ 1)

with some constant C independent of x. This implies the assertion.

Example 4.3. Set n = 1 and x = x1. Let us choose

φ1(x) = exp
(
−x

2

2

)
, φ2(x) = Y (1− x2), φ3(x) =

exp
(
− 1

1− x2

)
if |x| < 1,

0 otherwise

x

ϕ3(x)

1−1

as amplitude functions and set

Fk(t) =

∫ ∞
−∞

δ(t− x2)φk(x) dx, Gk(τ) =

∫ ∞
−∞

eiτx
2

φk(x) dx (k = 1, 2, 3).

Here Y (x) denotes the Heaviside function. Then Fk(t) satisfy differential equations

(2t∂t + t+ 1)F1(t) = 0, (t− 1)(2t∂t + 1)F2(t) = 0, (2t(t− 1)2∂t + t2 + 1)F3(t) = 0

respectively. The point 0 is a regular singular point of the three differential equations

with characteristic exponent −1/2. The point 1 is a regular singular point of the second

equation with characteristic exponent 0, but is an irregular singular point of the last

equation. Consequently we get

F1(t) = t
−1/2
+ e−t/2, F2(t) = t

−1/2
+ Y (1− t)

in view of ∫ ∞
−∞

Fk(t) dt =

∫ ∞
−∞

φk(x) dx,
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and

F3(t) = C3t
−1/2
+ Y (1− t) exp

(
− 1

1− t

)
with some constant C3.

On the other hand, Gk (k = 1, 2, 3) belong to S ′(R)∩C∞(R) and satisfy differential

equations

((2τ + i)∂τ + 1)G1(τ) = 0,

(2τ∂2τ + (−2iτ + 3)∂τ − i)G2(τ) = 0,

(2τ∂3τ + (−4iτ + 5)∂2τ + (−2τ − 8i)∂τ − 1)G3(τ) = 0

respectively. In particular, we have G1(τ) =
√
2π(1−2iτ)−1/2. The equations for G2(τ)

and for G3(τ) have 0 as a regular singular point and the point at infinity as an irregular

singular point. Note that G2(τ) and G3(τ) are entire, i.e., holomorphic on C.

Example 4.4. Set

F (t) = (2π)−n/2
∫
Rn

exp
(
−|x|2

2

)
δ(t− f(x)) dx

with a quadratic form f(x) =
∑n

i,j=1 aijxixj . If the absolute values of all the eigenvalues

of the matrix (aij) are the same, then F (t) satisfies a linear differential equation of the

second order. We may assume

f(x) = a(x21 + · · ·+ x2p − x2p+1 − · · · − x2n)

with a constant a > 0. Then the integrand u = u(x, t) satisfies

(t− f(x))u = (∂xi + 2axi∂t + xi)u = (∂j − 2axj∂t + xj)u = 0 (1 ≤ i ≤ p < j ≤ n).

The following operators P and Q annihilate u:

P =

p∑
i=1

xi(∂xi + 2axi∂t + xi) +

n∑
i=p+1

xi(∂xi − 2axi∂t + xi)

=
n∑

i=1

∂xixi + 2f∂t + |x|2 − n =
n∑

i=1

∂xixi + 2∂tt+ |x|2 − n− 2∂t(t− f),

Q =

p∑
i=1

xi(∂xi + 2axi∂t + xi)−
n∑

i=p+1

xi(∂xi − 2axi∂t + xi)

=

p∑
i=1

∂xixi −
n∑

i=p+1

∂xixi + 2a|x|2∂t +
1

a
f + n− 2p.



10 Toshinori Oaku

Hence

2a∂tP −Q = 2a
∑
i=1

∂xixi∂t −
p∑

i=1

∂xixi +

n∑
i=p+1

∂xixi + (−4a∂2t +
1

a
)(t− f)

+ 4a∂2t t− 2na∂t −
1

a
t+ (2p− n)

implies

{4a2t∂2t + 2a2(4− n)∂t − t+ (2p− n)a}F (t) = 0.

The solutions of this differential equation are expressed as

P



∞ 0︷ ︸︸ ︷
1

2a
1− p

2
0 t

− 1

2a
−1

4
(2n− 2p− 4)

n− 2

2


.

On the other hand,

G(τ) =

∫
Rn

exp
(
iτf(x)− |x|2

2

)
satisfies a differential equation

{(4a2τ2 + 1)∂τ + a(2naτ + (n− 2p)i)}G(τ) = 0.

It follows that

G(τ) = exp
(
i
(
p− n

2

)
tan−1(2aτ)

)
(4a2τ2 + 1)−n/4.

More generally, if f(x) is a general quadratic form with eigenvalues a1, . . . , an, then

one has

G(τ) =
n∏

k=1

(1− 2iakτ)
−1/2 =

n∏
k=1

(4a2kτ
2 + 1)−1/4 exp

(
− i

2
tan−1(2akτ)

)
since G(τ) = (1− 2iτ)−1/2 if n = 1 and a = a1 = 1.

Example 4.5. Set f(x, y) = x3 − y2 and

F (t) = (2π)−1
∫
R2

exp
(
−x

2 + y2

2

)
δ(t− f(x, y)) dxdy.
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Then F (t) satisfies

{108t2∂5t + (−108t2 + 648t)∂4t + (27t2 − 486t+ 627)∂3t + (85t− 303)∂2t

+ (−4t+ 21)∂t + t− 3}F (t) = 0.

It has a regular singularity at 0 with the indicial equation s(s−1)(s−2)(6s+1)(6s−7).

Note that the b-function of f is (s+ 1)(6s+ 5)(6s+ 7).

Example 4.6. Set f(x, y, z) = x2 − y2z and

F (t) = (2π)−3/2
∫
R3

exp
(
−x

2 + y2 + z2

2

)
δ(t− f(x, y, z)) dxdydz.

Then F (t) satisfies

{16t2∂5t +(16t2+96t)∂4t +(4t2+72t+96)∂3t +(16t+48)∂2t +(4t+9)∂t+ t+3}F (t) = 0.

It has a regular singularity at 0 with the indicial equation s2(s− 1)2(s− 2). Note that

the b-function of f is (s+ 1)2(2s+ 3).

Example 4.7. Set f(x, y, z) = x3 − y2z2 and

F (t) = (2π)−3/2
∫
R3

exp
(
−x

2 + y2 + z2

2

)
δ(t− f(x, y, z)) dxdydz.

Then F (t) satisfies a linear ordinary differential equation of order 10 which has a regular

singularity at 0 with the indicial equation

s(s− 1)(s− 2)(s− 3)(s− 4)(s− 5)(6s+ 1)2(6s− 7)2 = 0.

Note that the b-function of f is (s+ 1)(3s+ 4)(3s+ 5)(6s+ 5)2(6s+ 7)2.

§ 5. Cutkosky-type phase space integrals associated with Feynman

diagrams

The Cutkosky-type phase space integral associated with a Feynman diagram G,

which we will call the phase space integral for short, describes the discontinuity of

the Feynman integral FG(p) along its singularity locus. We consider simple Feynman

diagrams in two-dimensional space-time for the sake of simplicity in actual computation,

inspired by the recent work by Honda and Kawai (see e.g., [1], [2]) on the Landau-

Nakanishi surface associated with G.

In general, for a two-dimensional vector p = (p0, p1), we denote p
2 = p20−p21 for the

Lorentz norm and dp = dp0dp1 for the volume element. Let m be a positive constant.



12 Toshinori Oaku

Then the delta function δ(p2 −m2) is well-defined and its support coincides with the

curve p2 −m2 = 0 in the 2-dimensional space-time R2. We set

δ+(p
2 −m2) = Y (p0)δ(p

2 −m2),

which is well-defined since the line p0 = 0 is disjoint from the curve p2 = m2. Its

support is contained in {p | p2 = m2, p0 ≥ m}. Moreover, if P ∈ D2 annihilates

δ(p2 −m2), then it also annihilates δ+(p
2 −m2). More precisely it is easy to see that

AnnD2δ+(p
2 −m2) = AnnD2δ(p

2 −m2)

holds, where D2 is the ring of differential operators with polynomial coefficients with

respect to the variables p0, p1. On the other hand, we denote by δ(p) the delta function

δ(p0)δ(p1) supported at the origin of R2.

We give a precise definition of the Cutkosky-type phase space integral associated

with a Feynman diagram in each example instead of presenting a general formulation.

Example 5.1. Let us study the Feynman diagram G with two vertices, two

external lines, and two internal lines as below:

p1 p2

k1

k2

Let us assign 2-vectors p1 = (p10, p11) and p2 = (p20, p21) to the external lines, k1 =

(k10, k11) and k2 = (k20, k21) to the internal lines. Then the phase space integral

associated with this diagram is defined to be

ĨG(p1,p2) =

∫
δ(p1 − k1 − k2)δ(−p2 + k1 + k2)δ+(k

2
1 −m2

1)δ+(k
2
2 −m2

2) dk1dk2.

It is easy to see that the product in the integrand makes sense as a hyperfunction by con-

sidering the singular spectrum (the analytic wave front set) of each factor. Integration

with respect to k2 yields the expression

ĨG(p1,p2) = δ(p1 − p2)IG(p1)

with

IG(p1) =

∫
δ+(k

2
1 −m2

1)δ+((p1 − k1)
2 −m2

2) dk1.

Since IG(p1) is invariant under Lorentz transformations of p1, we may put p1 =

(x, 0). Then the support of the integrand of IG((x, 0)) is contained in the set

{(x,k1) | k2
1 −m2

1 = (x− k10)
2 − k211 −m2

2 = 0, k10 > 0, x− k10 > 0}
⊂ {(x,k1) | k10 ≥ m1, x− k10 ≥ m2, |k11| < k10}
⊂ {(x,k1) | x ≥ m1 +m2, m1 ≤ k10 ≤ x−m2, |k11| < k10}.
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Hence the support of the integrand is proper with respect to the projection ϖ : R3 ∋
(x,k1) 7→ x ∈ R. It follows that IG((x, 0)) is well-defined as a hyperfunction on R and

its support is contained in {x ∈ R | x ≥ m1 +m2}.
Let us consider the second local cohomology group H2

I (C[x,k1]) with the ideal I

generated by two polynomials f1 := k2
1 −m2

1 and f2 := (x− k10)
2 − k211 −m2

2. Then we

can identify the integrand with the cohomology class δ(f1, f2) = [1/(f1f2)] in this local

cohomology group. Since the variety f1 = f2 = 0 is non-singular, the annihilator in the

ring D3 of the integrand coincides with that of δ(f1, f2), which consists of first order

operators together with f1, f2 and can be computed easily.

By virtue of Propositions 2.2 and 2.3, the integration algorithm described in [8]

gives us a differential equation PIG((x, 0)) = 0 with

P = (x−m1 −m2)(x−m1 +m2)(x+m1 −m2)(x+m1 +m2)∂x + 2(x2 −m2
1 −m2

2)x.

If m1 ̸= m2, then we get

IG((x, 0)) = C(x−m1+m2)
−1/2(x+m1−m2)

−1/2(x+m1+m2)
−1/2(x−m1−m2)

−1/2
+

with some constant C by quadrature noting that its support is contained in the interval

[m1 +m2,∞) and that there is no hyperfunction solution of the differential equation

above whose support is the point m1 +m2.

On the other hand, if m1 = m2, then IG((x, 0)) satisfies

{x(x2 − 4m2
1)∂x + 2(x2 − 2m2

1)}IG((x, 0)) = 0.

It follows that

IG((x, 0)) = Cx−1(x+ 2m1)
−1/2(x− 2m1)

−1/2
+

with some constant C.

Example 5.2. The phase space integral associated with the Feynman diagram

G with two vertices, two external lines, and three internal lines as below

p1 p2

k1

k3

k2

is given by

ĨG(p1,p2) =

∫
δ(p1 − k1 − k2 − k3)δ(−p2 + k1 + k2 + k3)

× δ+(k
2
1 −m2

1)δ+(k
2
2 −m2

2)δ+(k
2
3 −m2

3) dk1dk2dk3
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with variables p1 = (p10, p11), p2 = (p20, p21), k1 = (k10, k11), k2 = (k20, k21), k3 =

(k30, k31) and positive constants m1, m2, m3. We rewrite this integral as

ĨG(p1,p2) = δ(p1 − p2)IG(p1)

with

IG(p1) =

∫
δ+(k

2
1 −m2

1)δ+(k
2
2 −m2

2)δ+((p1 − k1 − k2)
2 −m2

3) dk1dk2.

As in the previous example we can set p1 = (x, 0). The support of the integrand is

contained in

{(x,k1,k2) | k10 ≥ m1, k20 ≥ m2, x− k10 − k20 ≥ m3, |k11| < k10, |k21| < k20}.

Hence IG((x, 0)) is well-defined as a hyperfunction on R and its support is contained in

the interval [m1 +m2 +m3,∞).

Since the computation for general m1,m2,m3 is intractable, let us set m1 = m2 =

m3 = 1. Then by the integration algorithm we obtain

{(x(x− 1)(x+ 1)(x− 3)(x+ 3)∂2x + (5x4 − 30x2 + 9)∂x + 4x3 − 12x}IG((x, 0)) = 0.

The points 0,±1,±3 are regular singular and the indicial equations at these points are

all s2. It follows that IG((x, 0)) is a locally integrable function of the form

IG((x, 0)) = a(x)Y (x− 3)

with a real analytic function a(x) on the interval (1,∞) in view of the lemma below and

analytic continuation. Here we have a(3) ̸= 0 unless IG((x, 0)) vanishes everywhere.

The point at infinity is also a regular singular point with the indicial equation (s− 2)2.

On the other hand, if we set m1 = 1, m2 = 2, m3 = 3, then we obtain

{56x2(x− 2)(x+ 2)(x− 4)(x+ 4)(x− 6)(x+ 6)∂3x

+ (−15x9 + 1680x7 − 46256x5 + 341888x3 − 387072x)∂2x

+ (−75x8 + 5544x6 − 98000x4 + 404480x2 − 96768)∂x

− 60x7 + 3192x5 − 33712x3 + 44608x}IG((x, 0)) = 0.

The points 0,±2,±4,±6 are regular singular points. The indicial equation at 6 is

s2(s− 1). It follows that IG((x, 0)) is a locally integrable function of the form

IG((x, 0)) = a(x)Y (x− 6)

with a real analytic function a(x) on the interval (4,∞) in view of the lemma below.

The point at infinity is an irregular singular point.



Integration of holonomic hyperfunctions 15

Lemma 5.3. Let P be a differential operator of the form

P = x∂mx + a1(x)∂
m−1
x + · · ·+ am(x)

with a positive integer m and analytic functions a1(x), . . . , am(x) defined on a neigh-

borhood of x = 0. Assume a1(0) = m − 1. Let u(x) be a hyperfunction defined on a

neighborhood of 0 whose support is contatined in {x ∈ R | x ≥ 0} such that Pu(x) = 0.

Then u(x) is written in the form

u(x) = a(x)Y (x)

with a real anayltic function a(x) on a neighborhood of 0 such that Pa(x) = 0. Moreover,

we have a(0) ̸= 0 unless u(x) vanishes everywhere.

Proof. Note that 0 is a regular singular point of P and its indicial polynomial at

0 is given by

b(λ) = λ(λ− 1) · · · (λ−m+ 1) + a1(0)λ(λ− 1) · · · (λ−m+ 2)

= λ(λ− 1) · · · (λ−m+ 2)(λ−m+ 1 + a1(0))

= λ2(λ− 1) · · · (λ−m+ 2).

Since b(λ) = 0 has no integer roots greater thanm−2, it follows that the homomorphism

P : C{x} → C{x} is surjective and the dimension of its kernel is m− 1.

By the assumption, there exists a holomorphic function F (z) on the set {z ∈ C |
|z| < ε} \ [0,∞] with ε > 0 such that

u(x) = F (x+
√
−10)− F (x−

√
−10).

Since P : C{x} → C{x} is surjective, we may assume PF (z) = 0. Let us rewrite P as

P = z∂mz + (m− 1)∂m−1z + P1∂
m−2
z + · · ·+ Pm−2∂z + Pm−1 + Pm + · · · ,

where Pk is a differential operator of order at most min{k,m− 1} such that

Pkz
λ = pk(λ)z

λ+max{0,k−m+1}

with a polynomial pk(λ) of λ. Following the Frobenius method, we can construct a

series

v(z, λ) =
∞∑

n=0

cn(λ)z
λ+n

with rational functions cn(λ) of λ such that

(5.1) Pv(x, λ) = b(λ)zλ
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and c0(λ) = 1 by the recursion formula

cn(λ) = −
max{m−2,n}∑

k=1

(λ+ n− k) · · · (λ+ n−m+ 2)

b(λ+ n)
pk(λ+ n−m+ 1)cn−k(λ)

−
n∑

k=m−1

pk(λ+ n− k)

b(λ+ n)
cn−k(λ)

= −
max{m−2,n}∑

k=1

pk(λ+ n−m+ 1)

(λ+ n)2(λ+ n− 1) · · · (λ+ n− k + 1)
cn−k(λ)

−
n∑

k=m−1

pk(λ+ n− k)

b(λ+ n)
cn−k(λ)

for n = 1, 2, 3, . . . . This implies that cn(λ) are regular at λ = 0. Differentiating (5.1)

with respect to λ and substituting 0 for λ, we get

P
∂v

∂λ
(z, 0) =

∂b

∂λ
(0) + b(0) log z = 0

with
∂v

∂λ
(z, 0) =

∞∑
n=0

∂cn
∂λ

(0)zn +

∞∑
n=0

cn(0)z
n log z.

Hence F (z) is written in the form

F (z) = G(z) + a
∞∑

n=0

cn(0)z
n log z

with a holomorphic function G(z) on a neighborhood of 0 and a ∈ C. Hence we get

u(x) = 2π
√
−1a

∞∑
n=0

cn(0)x
nY (x) = 2π

√
−1av(x, 0)Y (x)

with c0(0) = 1 and Pv(x, 0) = b(0) = 0.

Example 5.4. Let us consider the phase space integral

ĨG(p1,p2) =

∫
δ(p1 − k1 − k2)δ(−p2 + k1 + k3)δ(−p3 + k2 − k3)

× δ+(k
2
1 −m2

1)δ+(k
2
2 −m2

2)δ+(k
2
3 −m2

3) dk1dk2dk3

associated with the diagram G below.

p1 p2

p3

k1

k2

k3
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Performing the integration with respect to k2 and k3, we obtain

ĨG(p1,p2,p3) = δ(p1 − p2 − p3)IG(p1,p2)

with

IG(p1,p2) =

∫
δ+(k

2
1 −m2

1)δ+((p1 − k1)
2 −m2

2)δ+((p2 − k1)
2 −m2

3) dk1.

The support of the integrand is contained in

{(p1,p2,k1) | k10 ≥ m1, p10 − k10 ≥ m2, p20 − k10 ≥ m3, |k11| < k10}.

Hence IG(p1,p2) is well-defined as a hyperfunction on R4 and one has

supp IG(p1,p2) ⊂ {(p1,p2) | p10 ≥ m1 +m2, p20 ≥ m1 +m3}.

Let us set m1 = m2 = m3 = 1, p1 = (x, 0) and p2 = ((y+z)/2, (y−z)/2) following
Honda-Kawai-Stapp [2] and set

IG(x, y, z) = IG((x, 0), ((y + z)/2, (y − z)/2))

by abuse of notation. Then the integration algorithm returns a holonomic system M =

D3/I for IG(x, y, z) with a left ideal I of D3, which is too complicated to show here.

The characteristic variety of M is given by

Char(M) = T ∗{f=0}C
3 ∪ T ∗{x=0}C

3 ∪ T ∗{x=f0=0}C
3 ∪ T ∗{x=yz−4=0}C

3

∪ T ∗{x=y=0}C
3 ∪ T ∗{x=z=0}C

3 ∪ T ∗{x=y=z=0}C
3

with

f(x, y, z) = yzx2 − yz(y + z)x+ y2z2 + (y − z)2, f0(y, z) = f(0, y, z),

where we denote by T ∗ZC3 the closure of the conormal bundle of the regular part of

an analytic set Z of C3. The decomposition of Char(M) was done by using a library

file noro pd.rr of Risa/Asir [7] for prime and primary decomposition of polynomial

ideals developed by M. Noro (see e.g., [4] for algorithms); he also computed a primary

decomposition of the symbol ideal of I, which enabled us to compute the multiplicity

of each component of Char(M). Thus the characteristic cycle, i.e., the characteristic

variety with multiplicity of each component, of M is

T ∗{f=0}C
3 + 2T ∗{x=0}C

3 + T ∗{x=f0=0}C
3 + T ∗{x=yz−4=0}C

3

+ T ∗{x=y=0}C
3 + T ∗{x=z=0}C

3 + 2T ∗{x=y=z=0}C
3.
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In particular, the support of M as D-module is the hypersuface of C3 defined by

xf(x, y, z) = 0. The singular locus of the complex hypersurface f = 0 is the union

of two complex lines {x = y = z} and {y = z = 0}. There is a stratification of the

hypersurface f = 0 of C3 with respect to the (local) b-function bf,p(s) of f at a point p

of each stratum as follows:

strata bf,p(s)

{(0, 0, 0)} (s+ 1)3(2s+ 3)

{(2, 0, 0), (−2, 0, 0), (2, 2, 2), (−2,−2,−2)} (s+ 1)2(2s+ 3)

{x = y = z} ∪ {y = z = 0} \ {(0, 0, 0), (±2, 0, 0),±(2, 2, 2)} (s+ 1)2

{f = 0} \ ({x = y = z} ∪ {y = z = 0}) s+ 1

Note that the b-function of f at the points (±2, 0, 0) and ±(2, 2, 2) coincides with that

of g := x2− y2z at the origin, which defines what is called the Whitney umbrella. More

precisely, the b-function of g at each stratum is as follows:

stratum bg,p(s)

{(0, 0, 0)} (s+ 1)2(2s+ 3)

{x = y = 0} \ {(0, 0, 0)} (s+ 1)2

{g = 0} \ {x = y = 0} s+ 1

However, the present author does not know whether the germ of analytic function

(f, (2, 2, 2)), for example, is (real) analytically equivalent to (g, (0, 0, 0)). We used a

library file nn ndbf.rr of Risa/Asir [7] for the computation of the stratifications above

(see e.g., [6] for algorithms).

The fiber of the characteristic variety of M at each zero-dimensional stratum of

f = 0 is given by

π−1((0, 0, 0)) ∩ Char(M) = {(0, 0, 0; ξ, η, ζ) | ξ, η, ζ ∈ C},
π−1(p) ∩ Char(M) = {(p; ξ, η, ζ) | ξ, η, ζ ∈ C, η = ζ}

with p = (±2, 0, 0) or p = ±(2, 2, 2), where π : T ∗C3 → C3 is the projection of the cotan-

gent bundle to the base space. The fiber of Char(M) at a point in a one-dimensional

stratum, e.g., x = y = z, consists of two complex lines while that at a regular point of

f = 0 consists of one complex line.

Next let us consider the real hypersurface

S = {(x, y, z) ∈ R3 | f(x, y, z) = 0}

of R3. Since the discriminant of f with respect to x is yz(y−z)2(yz−4), the projection

of S to the yz-plane is given by

Syz = {(y, z) ∈ R2 | yz(yz − 4) ≥ 0} ∪ {(y, z) | y = z}
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as shown by the grey regions and the line segment in the figure below:

y

z

Except at the origin, the fiber of the projection of S to Syz consists of one or two points.

In particular, the fiber at a point in the line y = z consists of only one point. Hence S

has a line segment connecting the two points ±(2, 2, 2) as a one-dimensional component.

Since the support of IG(x, y, z) is contained in the support ofM , i.e., xf(x, y, z) = 0,

as well as in the set {(x, y, z) ∈ R3 | x ≥ 2, y + z ≥ 4}, we have

supp IG(x, y, z) ⊂ {(x, y, z) ∈ R3 | f(x, y, z) = 0, x ≥ 2, y + z ≥ 4}.

In addition, since IG(x, y, z) coincides with a finite sum of derivatives of δ(f) multiplied

by real analytic functions on the regular part Sreg of S, the intersection of the support

of IG(x, y, z) and Sreg is a union of connected components of Sreg. Thus we conclude

that the support of IG(x, y, z) satisfies

supp IG(x, y, z) ⊂ {(x, y, z) | f(x, y, z) = 0, x ≥ 2, y > 0, z > 0, yz ≥ 4},

the projection of which to the yz-plane is shown as the hatched region in the figure

above. More precisely, we can confirm by direct computation that xf(x, y, z) belongs

to the left ideal I, which implies f(x, y, z)IG(x, y, z) = 0. It follows that IG(x, y, z) is

the product of a real analytic function and δ(f) on Sreg.

We remark that the hypersurface S of R3 coincides with the Landau-Nakanishi

surface associated with the triangle diagram T1 studied by Honda-Kawai-Stapp in Ap-

pendix A of [2].
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