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Annihilators of Laurent coefficients of the complex
power for normal crossing singularity

By

Toshinori OAKU *

Abstract

Let f be a real-valued real analytic function defined on an open set of R™. Then the
complex power f_/t is defined as a distribution with a holomorphic parameter A. We determine
the annihilator (in the ring of differential operators) of each coefficient of the principal part of
the Laurent expansion of f_’i\r about A = —1 in case f = 0 has a normal crossing singularity.

§1. Introduction

Let Dx be the sheaf of linear differential operators with holomorphic coefficients
on the n-dimensional complex affine space X = C™. We denote by Dj,; the sheaf
theoretic restriction of Dx to the n-dimensional real affine space M = R", which is the
sheaf of linear differential operators whose coefficients are complex-valued real analytic
functions. Let us denote by Dy = (Dyy)o, for the sake of brevity, the stalk of Dy, (or of
Dx) at the origin 0 € M, which is a (left and right) Noetherian ring.

Let D}, be the sheaf on M of the distributions (generalized functions) in the sense
of L. Schwartz. In general, for a sheaf 7 on M and an open subset U of M, we denote
by I'(U, F) = F(U) the set of the sections of F on U. Let C3°(U) be the set of the
complex-valued C'*° functions defined on U whose support is a compact set contained
in U. Then I'(U, D);) consists of the C-linear maps

u: CP(U) 2 pr— (u,p) € C
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which are continuous in the sense that lim;_, . (u, ¢;) = 0 holds for any sequence {¢;}
of C§°(U) if there is a compact set K C U such that ¢; =0 on U \ K and

lim sup [0%p;(z)| =0 for any o € N”,
IR0 geU
where we use the notation z = (x1,...,2,), N={0,1,2,...} and 0% = 07" -- - 0% with
0; = 0/0x;.
For a distribution u defined on an open set U of M, its annihilator Annp,,u in Dy
is defined to be the sheaf of left ideals of sections P of Dj; which annihilate u. That is,
for each open subset V' of U, we have by definition

I'(V,Annp,,u) = {P € Dy (V) | Pu=0on V}.

Its stalk Annp,u at 0 € M is a left ideal of Dy.

Now let f be a real-valued real analytic function defined on an open set U of M.
Then for a complex number A\ with non-negative real part (Re A > 0), the distribution
fﬁ is defined to be the locally integrable function

Pa) = f(2)* = exp(Alog f(2)) if f(z) >0
00 if f(z) <0

on U and is holomorphic with respect to A for Re A > 0.
For each x( € U, there exist a nonzero polynomial b ;,(s) in an indeterminate s
and some P(s) € (Das)a,[s] such that

braeMN 3 =P

holds in a neighborhood of zy for Re A > 0. It follows that ffr‘ is a distribution-valued
meromorphic function on the whole complex plane C with respect to A. This is called the
complex power, and for a compactly supported C°°-function ¢ on U, the meromorphic
function (f7,¢) in X is called the local zeta function (see, e.g., [1]).

By virtue of Kashiwara’s theorem on the rationality of b-functions ([2]), the poles of
fj’) are negative rational numbers. Let Ay be a pole of fj’) and xg be a point of U. Then
there exist a positive integer m, an open neighborhood V' of x(, an open neighborhood
W of A\g in C, and distributions uj defined on V such that

S =ummA =) 4 u (A= Ao) T+ ug Fur (A — Ag) + -

holds as distribution on V for any A € W\ {\¢}. To determine the poles of f?, and its
Laurent expansion at each pole is an interesting problem and has been investigated by
many authors.
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From the viewpoint of D-module theory, it would be interesting if we can compute
the annihilator of each Laurent coefficient as above explicitly. For example, we compared
the annihilator of the residue of fj} at A = —1 with that of local cohomology group
supported on f =0 in [3].

In this paper, we treat the case where f = 0 has a normal crossing singularity at
the origin and determine the annihilators of the coefficients of the negative degree part
of the Laurent expansion about A = —1. The two dimensional case was treated in [3].

§2. Main results

Let © = (x1,...,2,) be the coordinate of M = R™.

Proposition 2.1.  The distribution (1 ---x,)} has a pole of ordern at A = —1.
Let -
(1 -- xn)j‘_ = Z (A + 1) u;
j=—n

be the Laurent expansion of the distribution (xy - - :1r,‘n)j\r with respect to the holomorphic
parameter X\ about A = —1, with u; € D;(M) for j > —n. Then for k=0,1,...,n—1,
the left ideal Annp,u_p 11 of Dy is generated by

Tjy Ty (LS <oor <Jrpr <), 2101 — w0 (2<i<n).
Proof. In one variable ¢, we have

= (A+ 1) 1oyt

=(A+1)719,{ Y(#) +lel' (A + 1) (log t,)
=(A+1)" i (A +1)7719,(logt 1),

where (logt, )7 is the distribution defined by the pairing

o0
(gt 0) = | (ogt)iole)di
0
for ¢ € C3°(R).
Let us introduce the following notation:
e For a nonnegative integer j, we set

B 5(t) (j :0)7
h;(t) = {j—lﬁt(logﬂ)j (j>1)
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with 875 = a/at and
ha(w) = ha, (1) -+ - ha, (T0)

for a multi-index o = (aq,...,a,) € N™.

e For a multi-index o = (aq,...,a,) € N, we set

lal =1+ +an, [0 =max{a; |1 <i<n}.

e Set S(n)={o=(01,...,0n) €{1,=1}"| 01+ 0, = 1}.

Since

(ml...xn)f\’_ g Z (Ulwl)f\’_"'(o'nmn)i7
ceS(n)

we have

Uonk(@) = > Y ha(ox).

ceS(n) |al=k

In particular, we have

u_n(x)= Y d(orwr) - 6(onzn) =27 6(21) - ().

oceS(n)
It follows that Annp,u_,, is generated by x1, ..., x,. This proves the assertion for k = 0
since x107 — x;0; = 011 — 0;x; belongs to the left ideal of Dy generated by 1, ..., z,.

We shall prove the assertion by induction on k. Assume k > 1 and P € Dy
annihilates u_, 4, that is, Pu_,+r = 0 holds on a neighborhood of 0 € M. By
division, there exist Q1,...,Q,, R € Dy such that

(2.1) P = Q181$1 +"‘+Qnanl'n+R,
R= Z (g 31" 0° (aq,p € C).
a1 fr=+=anBr,=0
Since
(2.2) Uengr(@)= > Y halox)+ D> Y ha(ow),
ceS(n) |a|=k, [a]=1 ceS(n) |a|=k, [a]>2
we have

U_pyk(T) = 2n_k_15($1) c8(Tn—k ) (Tn—kr1) - ha(Tn)

1 1
= 2" F15(xy) - 8(mp
(z1) -+ 0( k)xn—k—i—l .
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on the domain z,_g4+1 > 0,...,2, > 0. Note that 0;z; annihilates both §(z;) and 1;7;_1.
Hence

0= Pu_n+k = Ru_n+k

- 2 (~1)Pnsrr TG e Bl g
ar==0n_t=0,0n_r41Bn_kt1=""=0nBrn=0
5(’81)(1131) . 5(Bn—k)(xnik)xzz—klf:—ll_ﬁn—k+l—1 N ‘xgn*ﬁ’nfl

holdson {x € M | xp—g+1 > 0,...,2, > 0} NV with an open neighborhood V of the
origin. Hence an g = 0 holds if oy = -+ = a1, = 0.

In the same way, we conclude that a, g = 0 if the components of o are zero except
at most k components. This implies that R is contained in the left ideal generated by
Tjy Ty, With 1< g1 <o < g1 <.

In the right-hand-side of (2.2), each term contains the product of at least n — k
delta functions. Hence x;, ---z;, ., with 1 < j; <--- < jry1 < n, and consequently R
also, annihilates u_,4x(z). Hence we have

O0=Pu_pnyp = Z Q0 u_p .

i=1

On the other hand, since
Oiwi(v1 -+ wp)} = (230 + V(1 - 20)) = N+ 1) (21 3,) %,

we have
OiTiU_ = U_j_1 (k<n—-1,1<i<n)

and consequently
0= Z Qi0iriu_py = Z Qil—ntk—1-
i=1 i=1
By the induction hypothesis, Y | Q; belongs to the left ideal of Dy generated by
Tjy o Tjy (1§j1<<]k§n), $181—l‘iai (QS’LSTL)

Now rewrite (2.1) in the form
P = Z Qi01z1 + Z Qi(0jx; — 01z1) + R.
i=1 i=2

If j;1 > 1, we have

ili'jl . -a:jké?lxl = éﬁxlle .. 'iL'jk.
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If j1 =1, let [ be an integer with 2 <[ < n such that [ # js,...,l # ji. Then we have
Tj, X 011 = Tjy - T4, 010171 = T, - T4, 21 (121 — Ojy) + Oy, - - - x5, L1
We conclude that P belongs to the left ideal generated by
i xj,, (1<jii<-<grp1<n), 2101 —20; (2<1i<n).
Conversely it is easy to see that these generators annihilate u_,, since
101 (1 - - :11:n)j\r = 2;0;(xq - xn)j‘_ = AMxy-- :En)i
and each term of (2.2) contains the product of at least n — k delta functions. O

Theorem 2.2.  Let fi1,..., fin be real-valued real analytic functions defined on a
neighborhood of the origin of M = R™ such that dfy A --- Ndf,, #0. Let

oo

i fu)h = 52 (0 Dy
j=—m
be the Laurent expansion about A\ = —1, with each u; being a distribution defined on a
common neighborhood of the origin. Let vq,...,v, be real analytic vector fields defined

on a neighborhood of the origin which are linearly independent and satisfy

1 (ifi=j<m
Uz‘(fj):{o Eof;fherj’is_@ |

Then for k =0,1,...,m — 1, the annihilator Annp,u_,4+k s generated by

Tivo fipen (1< g1 <os < g1 <m),
fivi = fivi 2<i<m), v; (m+1<j5<n).
Proof. By a local coordinate transformation, we may assume that f; = x; for
j=1,...,m, and v; = 9/0x; for j = 1,...,n. Then the distribution u; does not
depend on x,,41,...,Z,. Hence we have only to apply Proposition 2.1 in R™. U
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