On various *b*-functions of specializable *D*-modules

Toshinori Oaku Department of Mathematics, Tokyo Woman's Christian University

October 17, 2018

Indicial polynomial along a submanifold

- X: an open set of \mathbb{C}^n (or an n-dim. complex manifold).
- ullet Y: a non-singular complex analytic submaifold of X.
- \mathcal{D}_X : the sheaf of linear differential operators with holomorphic coefficients on X.
- \mathcal{M} : a coherent left \mathcal{D}_X -module on X.
- $\{F_Y^i(\mathcal{D}_X)\}_{i\in\mathbb{Z}}$ the V-filtration of \mathcal{D}_X along Y.
- θ : a vector field on a neighborhood of Y in X which induces the identity map on $\mathcal{I}_Y/\mathcal{I}_Y^2$, where \mathcal{I}_Y is the defining ideal of Y. In a local coordinate $x=(x_1,\ldots,x_d,x_{d+1},\ldots,x_n)$ such that $Y=\{x_1=\cdots=x_d=0\}$, we may take

$$\theta = x_1 \frac{\partial}{\partial x_1} + \dots + x_d \frac{\partial}{\partial x_d}.$$

Definition

Let u be a section of \mathcal{M} defined on a neighborhood of $x_0 \in Y$. The indicial polynomial of u along Y at x_0 is the monic polynomial b(s), if any, in an indeterminate s of the least degree such that

$$(b(\theta)+P)u=0 \quad (\exists P\in F_Y^{-1}(\mathcal{D}_X)_{x_0}).$$

If we impose the condition $\operatorname{ord} P \leq \operatorname{deg} b(s)$, then b(s) is called a regular indicial polynomial of u along Y at x_0 .

 \mathcal{M} is called (regular) specializable along Y if each section u of \mathcal{M} has a (regular) indicial polynomial along Y.

- ullet $\mathcal M$ is specializable if $\mathcal M$ is holonomic (Kashiwara-Kawai).
- ullet $\mathcal M$ is regular specializable if $\mathcal M$ is regular holonomic (KK).
- If \mathcal{M} is defined over the Weyl algebra, there are algorithms to detect (regular) specializability and to compute the (regular) indicial polynomial(s) (Oaku 2009 (JPAA) for regular case).

Non-uniqueness of regular indicial polynomial

The indicial polynomial is unique but a regular indicial polynomial is not necessarily unique. For example, for u such that

$$x^2 \partial_x^2 u = x(\partial_x + \partial_y^2) u = 0$$

in two variables (x, y), the indicial polynomial of u along x = 0 is s, while s(s - c) is a regular indicial polynomial of u along x = 0 for any c, of the least degree.

$$\overline{\because) \, x \partial_x u} = -x \partial_y^2 u, \ (x^2 \partial_x^2 + c x \partial_x) u = -c x \partial_y^2 u.$$

Note that $\mathcal{D}_X u$ is holonomic since its characteristic variety is

$$\{(x, y, \xi dx + \eta dy) \mid x = \eta = 0\} \cup \{(x, y, \xi dx + \eta dy) \mid \xi = \eta = 0\}.$$

Hence we mean by 'the regular indicial polynomial' the set of the regular indicial polynomials, which is not necessarily an ideal of $\mathbb{C}[s]$.

Examples

• Appell's F_1 is defined by $P_1u = P_2u = 0$ with

$$P_1=x(1-x)\partial_x^2+y(1-x)\partial_x\partial_y+(c-(a+b_1+1)x)\partial_x-b_1y\partial_y-ab_1y\partial_y^2+y(1-y)\partial_y^2+y(1-y)\partial_x\partial_y+(c-(a+b_2+1)y)\partial_y-b_2x\partial_x-ab_1y\partial_y^2$$

and parameters a, b_1, b_2, c . Both the indicial and the regular indicial polynomials along the origin (0,0) are s(s+c-1) for arbitrary values of the parameters although $\mathcal{D}_X u$ is holonomic if and only if $c \neq a+1$.

• Let $\mathcal{M}_A(\beta)$ be the A-hypergeometric (GKZ) system for an arbitrary $d \times n$ integer matrix A s.t. $\operatorname{rank} A = d$ with parameters $\beta = (\beta_1, \ldots, \beta_d)$. Then $\mathcal{M}_A(\beta)$ is regular specializable along the origin for any β (Oaku 2009). In particular we have an isomorphism

$$\operatorname{Ext}_{(\mathcal{D}_X)_0}^k(\mathcal{M}_A(\beta),\mathbb{C}\{x\}) \simeq \operatorname{Ext}_{(\mathcal{D}_X)_0}^k(\mathcal{M}_A(\beta),\mathbb{C}[[x]]) \qquad (\forall k \in \mathbb{Z}).$$

Kashiwara's b-function

- \mathcal{M} : a coherent left \mathcal{D}_X -module.
- \mathcal{O}_X : the sheaf of holomorphic functions on X.
- f: a section of \mathcal{O}_X on X.
- s: an inderminate (a parameter).
- $\mathcal{L}_f := \mathcal{O}_X[f^{-1}, s]f^s$, the free $\mathcal{O}_X[f^{-1}, s]$ -module generated by the symbol f^s .
- $\Rightarrow \mathcal{L}_f$ has a natural structure of left $\mathcal{D}_X[s]$ -module.
- $\Rightarrow \mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{L}_f$ has a structure of left $\mathcal{D}_X[s]$ -module.

Definition (Kashiwara)

Kashiwara's *b*-function of a germ u of \mathcal{M} at $x_0 \in X$ w.r.t. f is the monic polynomial b(s), if any, in an indeterminate s of the least degree such that

$$P(s)(u \otimes f^{s+1}) = b(s)u \otimes f^{s} \quad (\exists P(s) \in \mathcal{D}_{X}[s]_{x_{0}})$$

holds in $\mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{L}_f$. (If ord $\partial_{x,s} P(s) \leq \deg b(s)$, we call b(s) regular.)

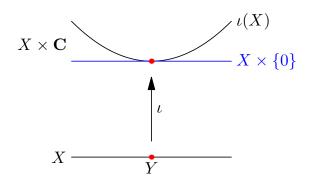
Theorem (Kashiwara 1976)

Kashiwara's b-function exists if $\mathcal{D}_X u$ is holonomic.

Kashiwara's *b*-function coincides with the Bernstein-Sato polynomial of f if $M = \mathcal{O}_X$ and u = 1.

Indicial polynomial w.r.t. a graph embedding

- f: a holomorphic function on X.
- $\iota: X \ni x \mapsto (x, f(x)) \in X \times \mathbb{C}$.
- $Y = \{x \in X \mid f(x) = 0\}.$
- $Z = \iota(X) = \{(x, t) \in X \times \mathbb{C} \mid t = f(x)\}.$
- $\mathcal{B}_{Z|X\times\mathbb{C}} = \mathcal{H}_Z^1(\mathcal{O}_{X\times\mathbb{C}}) \ni \delta(t-f) = [(t-f)^{-1}].$
- \mathcal{M} : a coherent left \mathcal{D}_X -module defined on X.
- u: a section of \mathcal{M} defined on a neighborhood of $x_0 \in Y$.
- $\iota_*\mathcal{M} = \mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{B}_{Z|X \times \mathbb{C}}$: direct image by ι , which is a coherent left $\mathcal{D}_{X \times \mathbb{C}}$ -module with $\operatorname{supp} \iota_* \mathcal{M} \subset Z$ (Kashiwara equiv.).



Definition

The (regular) indicial polynomial of u w.r.t. the graph embedding by f at $x_0 \in Y$ is the (regular) indicial polynomial of $\iota_*(u) := u \otimes \delta(t - f) \in \iota_* \mathcal{M}$ along $X \times \{0\}$ at $(x_0, 0)$.

An example

Let
$$\mathcal{M}_A(\beta) = \mathcal{D}_X u$$
 be the A-hypergeometric system for $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$ with parameters $\beta = (\beta_1, \beta_2)$; i.e.,
$$(x_1\partial_1 + x_2\partial_2 + x_3\partial_3 - \beta_1)u = (x_2\partial_2 + 2x_3\partial_3 - \beta_2)u \\ = (\partial_1\partial_3 - \partial_2^2)u = 0.$$

The singular locus of $\mathcal{M}_A(\beta)$ is

$$\{(x_1,x_2,x_3)\in\mathbb{C}^3\mid x_1x_3(4x_1x_3-x_2^2)=0\}.$$

The indicial polynomial of u w.r.t. the graph embedding by $f:=4x_1x_3-x_2^2$ at any point $p\in\mathbb{C}^3$ such that f(p)=0 is $s(s-\beta_1-1/2)$.

Comparison between Kashiwara's b-function and indicial polynomial w.r.t. graph embedding

- $b_0(s)$: Kashiwara's *b*-function of *u* w.r.t. *f*.
- $b_1(s)$: the indicial polynomial of u w.r.t. the graph embedding by f.

Proposition

 $b_0(s)$ is a factor of $b_1(-s-1)$. Moreover, $b_0(s)$ and $b_1(-s-1)$ coincide if and only if $f: \mathcal{D}_X u \to \mathcal{D}_X u$ is injective at x_0 .

Example: If n=1, $\mathcal{M}=\mathcal{D}_X/x\mathcal{D}_X$, $u=\overline{1}\in\mathcal{M}$, f=x, then $b_0(s)=1$ and $b_1(s)=s+1$. \cdots) $u\otimes x^s=xu\otimes x^{s-1}=0$ in $\mathcal{M}\otimes_{\mathcal{O}_X}\mathcal{L}_f$, but $u\otimes\delta(t-x)\neq0$ and $(t\partial_t+1)(u\otimes\delta(t-x))=\partial_t t(u\otimes\delta(t-x))=\partial_t (xu\otimes\delta(t-x))=0$.

Comparison between the indicial polynomials along a hypersurface and w.r.t. graph embedding — Non-singular case

Theorem

Assume that f is non-singular at $x_0 \in Y$; i.e., $df \neq 0$ at x_0 . Then \mathcal{M} is (regular) specializable along Y at x_0 if and only if $\iota_*\mathcal{M}$ is (regular) specializable along $X \times \{0\}$ at $(x_0,0)$. Moreover, for any section u of \mathcal{M} near x_0 , the (regular) indicial polynomial of u along Y at x_0 coincides with the (regular) indicial polynomial of u w.r.t. the graph embedding by f at x_0 (i.e., the (regular) indicial polynomial of $\iota_*(u)$ along t = 0 at $(x_0,0)$).

Proof

We may assume that X is an open set of \mathbb{C}^n containing $x_0=0\in\mathbb{C}^n$, and that $f=x_1$. We use the notation $x=(x_1,x')$ with $x'=(x_2,\ldots,x_n)$ and $\partial_i=\partial/\partial x_i,\ \partial'=(\partial_2,\ldots,\partial_n)$. Let $b(s)\in\mathbb{C}[s]$ be the (regular) indicial polynomial of u along Y at 0. Then there exists a differential operator Q of the form $Q=Q(x,x_1\partial_1,\partial')$ such that

$$(b(x_1\partial_1)+x_1Q(x,x_1\partial_1,\partial'))u=0$$

(and ord $Q \leq \deg b(s)$).

It follows that

$$(b(t(\partial_t + \partial_1)) + tQ(x, t(\partial_t + \partial_1), \partial'))(u \otimes \delta(t - x_1))$$

= $((b(x_1\partial_1) + x_1Q(x, x_1\partial_1, \partial'))u) \otimes \delta(t - x_1) = 0$

since one has, for any $v \in \mathcal{M}$,

$$(t-x_1)(v\otimes\delta(t-x_1))=0, \quad (\partial_t+\partial_1)(v\otimes\delta(t-x_1))=(\partial_1v)\otimes\delta(t-x_1).$$

There exists a differential operator R of the form $R = R(t\partial_t, \partial_1)$ such that $\operatorname{ord} R = \operatorname{deg} b(s)$ and

$$b(t(\partial_t + \partial_1)) = b(t\partial_t) + tR(t\partial_t, \partial_1),$$

Hence we have

$$(b(t\partial_t)+t(R(t\partial_t,\partial_1)+Q(x,t(\partial_t+\partial_1),\partial'))(u\otimes\delta(t-x_1))=0.$$

Conversely, let b(s) be the (regular) indicial polynomial of $u \otimes \delta(t-x_1)$ along t=0 at 0. Then there eixsts a differential operator Q of the form $Q=Q(t,x,t\partial_t,\partial_1,\partial')$ such that

$$(b(t\partial_t)+tQ(t,x,t\partial_t,\partial_1,\partial'))(u\otimes\delta(t-x_1))=0$$

(and ord $Q \leq \deg b(s)$). By using $t\partial_t = t(\partial_t + \partial_1) - t\partial_1$, we rewrite the operator as

$$egin{aligned} P &:= b(t\partial_t) + tQ(t,x,t\partial_t,\partial_1,\partial') \ &= b(t(\partial_t + \partial_1)) + t ilde{Q}(t,x,t(\partial_t + \partial_1),\partial_1,\partial') \ &= b(t(\partial_t + \partial_1)) + t\sum_{i=0}^m Q_i(t,x,t(\partial_t + \partial_1),\partial')\partial_1^i. \end{aligned}$$

We have

$$[t-x_1,P](u\otimes\delta(t-x_1))=0$$

with

$$[t-x_1,P]=t\sum_{i=1}^m iQ_i(t,x,t(\partial_t+\partial_1),\partial')\partial_1^{i-1}.$$

It follows that

$$egin{aligned} ilde{\mathcal{P}} &:= b(t(\partial_t + \partial_1)) + t \sum_{i=0}^m \Bigl(Q_i(t,x,t(\partial_t + \partial_1),\partial')\partial_1^i \ &- rac{i}{m} \partial_1 Q_i(t,x,t(\partial_t + \partial_1),\partial')\partial_1^{i-1}\Bigr), \end{aligned}$$

which is of order at most m-1 with repect to ∂_1 , also annihilates $u\otimes \delta(t-x_1)$. By induction, we get

$$((b(x_1\partial_1) + Q_0(x_1, x, x_1\partial_1, \partial'))u) \otimes \delta(t - x_1)$$

= $(b(t(\partial_t + \partial_1)) + Q_0(t, x, t(\partial_t + \partial_1), \partial'))(u \otimes \delta(t - x_1)) = 0.$

This implies

$$(b(x_1\partial_1)+Q_0(x_1,x,x_1\partial_1,\partial'))u=0.$$

Higher codimensional case

— after Budur-Mustata-Saito

- \bullet Y: an arbitrary closed analytic subset of X.
- \mathcal{J} : a coherent ideal of \mathcal{O}_X such that $\sqrt{\mathcal{J}} = \mathcal{I}_Y$.
- f_1, \ldots, f_d : a set of local generators of $\mathcal J$ on an neighborhood U of $x_0 \in Y$.
- $\iota: U \ni x \longmapsto (x, f_1(x), \ldots, f_d(x)) \in U \times \mathbb{C}^d$.
- $Z = \{(x, t_1, \dots, t_d) \in U \times \mathbb{C}^d \mid t_1 f_1(x) = \dots = t_d f_d(x) = 0\}.$
- $\mathcal{B}_{Z|U \times \mathbb{C}^d} = \mathcal{H}^d_{[Z]}(\mathcal{O}_{U \times \mathbb{C}^d})$: the d-th local cohomology group.
- \mathcal{M} : a coherent left \mathcal{D}_X -module defined on X.
- u: a section of \mathcal{M} defined on a neighborhood of x_0 .
- $\iota_*(u) = u \otimes \delta(t_1 f_1) \cdots \delta(t_d f_d) \in \mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{B}_{Z|U \times \mathbb{C}^d}$.

Definition-Theorem

Let b(s) be the (regular) indicial polynomial of $\iota_*(u)$ along $U \times \{0\}$. Then b(s-d) does not depend on the choice of local generators f_1, \ldots, f_d of \mathcal{J} . We call b(s-d) the (regular) b-function of u w.r.t. \mathcal{J} .

- A regular *b*-function of u w.r.t. \mathcal{J} is not necessarily unique. The above statement refers to the set of the regular *b*-functions.
- If $\mathcal{M} = \mathcal{O}_X$ and u = 1, then the *b*-function in the above sense conicides with b(-s), where b(s) is the Bernstein-Sato polynomial of the variety (w.r.t. the ideal \mathcal{J}) defined by Budur-Mustata-Saito (2006).

The following lemma describes the behavior of the indicial polynomial via Kashiwara equivalence (direct image) w.r.t. an embedding:

Lemma (Budur-Mustata-Saito)

Let Y be a non-singular complex submanifold of X and let $\iota: X \to X \times \mathbb{C}$ be an embedding. Let \mathcal{M} be a coherent left \mathcal{D}_X -module and u a section of \mathcal{M} near $x_0 \in Y$. Let b(s) be the (regular) indicial polynomial of u along Y at $x_0 \in Y$ and $\tilde{b}(s)$ be that of $u \otimes \delta(t)$ along $\iota(Y)$ at $(x_0,0)$. Then one has $\tilde{b}(s-1) = b(s)$.

Proof of Lemma

We may assume $Y = \{x \in X \mid x_1 = \cdots = x_d = 0\}$ and $\iota(x) = (x, 0)$. Then

$$\iota(Y) = \{(x,0) \mid x_1 = \cdots = x_d = t = 0\}.$$

There exists $Q \in V_Y^{-1}(\mathcal{D}_X)$ such that

$$(b(x_1\partial_1+\cdots+x_d\partial_d)+Q)u=0.$$

Then we have

$$(b(x_1\partial_1+\cdots+x_d\partial_d+\partial_t t)+Q)(u\otimes\delta(t))=0$$

and Q belongs to $V_{\iota(Y)}(\mathcal{D}_{X\times\mathbb{C}})$. Thus $\tilde{b}(s)$ is a factor of b(s+1). On the other hand, there exists $Q\in V_{\iota(Y)}^{-1}(\mathcal{D}_{X\times\mathbb{C}})$ such that

$$(\tilde{b}(x_1\partial_1+\cdots+x_d\partial_d+t\partial_t)+Q)(u\otimes\delta(t))=0.$$

Writing Q in the form $Q = \sum_{i,j \geq 0} Q_{ij}(x,\partial) \partial_t^i t^j$, we have

$$0 = (\tilde{b}(x_1\partial_1 + \dots + x_d\partial_d + t\partial_t) + Q)(u \otimes \delta(t))$$

$$= \tilde{b}(x_1\partial_1 + \dots + x_d\partial_d + \partial_t t - 1)(u \otimes \delta(t))$$

$$+ \sum_{i,j \geq 0} Q_{ij}(x,\partial)u \otimes \partial_t^i t^j \delta(t)$$

$$= \tilde{b}(x_1\partial_1 + \dots + x_d\partial_d - 1)u \otimes \delta(t) + \sum_{i \geq 0} Q_{i0}(x,\partial)u \otimes \delta^{(i)}(t).$$

This implies, in particular,

$$(\tilde{b}(x_1\partial_1+\cdots+x_d\partial_d-1)+Q_{00})u=0.$$

Since Q_{00} belongs to $V_Y^{-1}(\mathcal{D}_X)$, we know that b(s) divides $\tilde{b}(s-1)$. In conclusion, we get $b(s) = \tilde{b}(s-1)$.

Proof of Definition-Theorem (following BMS)

Suppose that there exist sections a_1, \ldots, a_d of \mathcal{O}_X at x_0 such that $f_{d+1} = a_1 f_1 + \cdots + a_d f_d$. (i.e., assume f_{d+1} is redundant.) Define an embedding

$$\iota: X \times \mathbb{C}^d \longrightarrow X \times \mathbb{C}^{d+1}$$
 by
$$\iota(x, t_1, \dots, t_d) = (x, t_1, \dots, t_d, a_1(x)t_1 + \dots + a_d(x)t_d).$$

Set
$$Z = \{(x, t_1, \dots, t_d) \mid t_1 = \dots = t_d = 0\}$$
. Then we have

$$\iota(Z) = \{(x, t_1, \dots, t_d, t_{d+1}) \mid t_1 = \dots = t_d = t_{d+1} = 0\}$$

and

$$\iota_*(u \otimes \delta(t_1 - f_1) \cdots \delta(t_d - f_d))$$

$$= u \otimes \delta(t_1 - f_1) \cdots \delta(t_d - f_d) \delta(t_{d+1} - a_1(x)t_1 - \cdots - a_d(x)t_d)$$

$$= u \otimes \delta(t_1 - f_1) \cdots \delta(t_d - f_d) \delta(t_{d+1} - a_1(x)f_1 - \cdots - a_d(x)f_d)$$

$$= u \otimes \delta(t_1 - f_1) \cdots \delta(t_d - f_d) \delta(t_{d+1} - f_{d+1}).$$

Let b(s) be the indicial poynomial of $u \otimes \delta(t_1 - f_1) \cdots \delta(t_d - f_d)$ along Z, and $\tilde{b}(s)$ be that of $u \otimes \delta(t_1 - f_1) \cdots \delta(t_d - f_d) \delta(t_{d+1} - f_{d+1})$ along $\iota(Z)$.

Then $b(s-d) = \tilde{b}(s-d-1)$ holds in view of Lemma.

Set $b_{f_1,...,f_d}(s) = b(s-d)$. Thus we have shown

$$b_{f_1,...,f_d}(s) = b_{f_1,...,f_d,f_{d+1}}(s)$$

if

$$\mathcal{J} = \mathcal{O}_X f_1 + \cdots + \mathcal{O}_X f_d = \mathcal{O}_X f_1 + \cdots + \mathcal{O}_X f_d + \mathcal{O}_X f_{d+1}.$$

The general case can be reduced to this situation step by step.

An example

With $X = \mathbb{C}^3 \ni (x, y, z)$, set $\mathcal{J} = \mathcal{O}_X(x^3 - y^2) + \mathcal{O}_X(x^2 - z)$, which is the defining ideal of a monomial curve $x^3 - y^2 = x^2 - z = 0$.

- The *b*-function b(s) of $1 \in \mathcal{O}_X$ w.r.t. \mathcal{J} at 0 is (s-2)(6s-11)(6s-13).
- The *b*-function of *u* such that $\partial_x u = \partial_y u = (z\partial_z a)u = 0$ w.r.t. $\mathcal J$ at 0 is

$$b(s,a) = (s-2)(s-a-2)(2s-2a-5)(6s-4a-11) \times (6s-4a-13)(6s-4a-15)$$

if $a \neq 0, -1, -2$.

- If a = 0, then b(s) = (s 2)(2s 5)(6s 11)(6s 13) whereas $b(s, 0) = (s 2)^2(2s 5)^2(6s 11)(6s 13)$.
- If a = -1, then b(s) = (s 1)(s 2)(2s 3)(6s 7)(6s 11) whereas $b(s, -1) = (s 1)(s 2)(2s 3)^2(6s 7)(6s 11)$.
- If a = -2, then b(s) = s(s-2)(2s-1)(6s-5)(6s-7) whereas $b(s, -2) = s(s-2)(2s-1)^2(6s-5)(6s-7)$.

Comparison between indicial polynomial and *b*-function at a regular point

Theorem

Assume that Y is non-singular at x_0 . Let d be the codimension of Y near x_0 . Let b(s) be the (regular) indicial polynomial of u along Y at x_0 . Then the b-function of u w.r.t. \mathcal{I}_Y is b(s-d).

This theorem also means that a (regular) b-function of u w.r.t. \mathcal{I}_Y exists (this condidition does not depend on the choice of local generators of \mathcal{I}_Y) if and only if a (regular) indicial polynomial of u along Y exists. The proof is similar to the one-codimensional case.

(Regular) specializability along an arbitrary subvariety

Definition

Let us call \mathcal{M} (regular) specializable along Y if a (regular) b-function of every section u of \mathcal{M} w.r.t. \mathcal{I}_Y (the defining ideal of Y) exists.

• If \mathcal{M} is (regular) holonomic, then \mathcal{M} is (regular) specializable along any subvariety Y of X.