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Indicial polynomial along a submanifold

X : an open set of Cn (or an n-dim. complex manifold).

Y : a non-singular complex analytic submaifold of X .

DX : the sheaf of linear differential operators with holomorphic
coefficients on X .

M : a coherent left DX -module on X .

{F i
Y (DX )}i∈Z the V -filtration of DX along Y .

θ : a vector field on a neighborhood of Y in X which induces
the identity map on IY /I2

Y , where IY is the defining ideal of Y .
In a local coordinate x = (x1, . . . , xd , xd+1, . . . , xn) such that
Y = {x1 = · · · = xd = 0}, we may take

θ = x1
∂

∂x1
+ · · ·+ xd

∂

∂xd
.
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Definition
Let u be a section of M defined on a neighborhood of x0 ∈ Y . The
indicial polynomial of u along Y at x0 is the monic polynomial b(s),
if any, in an indeterminate s of the least degree such that

(b(θ) + P)u = 0 (∃P ∈ F−1
Y (DX )x0).

If we impose the condition ordP ≤ deg b(s), then b(s) is called a
regular indicial polynomial of u along Y at x0.
M is called (regular) specializable along Y if each section u of M
has a (regular) indicial polynomial along Y .

M is specializable if M is holonomic (Kashiwara-Kawai).

M is regular specializable if M is regular holonomic (KK).

If M is defined over the Weyl algebra, there are algorithms to
detect (regular) specializability and to compute the (regular)
indicial polynomial(s) (Oaku 2009 (JPAA) for regular case).
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Non-uniqueness of regular indicial polynomial

The indicial polynomial is unique but a regular indicial polynomial is
not necessarily unique. For example, for u such that

x2∂2
xu = x(∂x + ∂2

y )u = 0

in two variables (x , y), the indicial polynomial of u along x = 0 is s,
while s(s − c) is a regular indicial polynomial of u along x = 0
for any c , of the least degree.
∵) x∂xu = −x∂2

yu, (x2∂2
x + cx∂x)u = −cx∂2

yu.

Note that DXu is holonomic since its characteristic variety is

{(x , y , ξdx + ηdy) | x = η = 0} ∪ {(x , y , ξdx + ηdy) | ξ = η = 0}.

Hence we mean by ’the regular indicial polynomial’ the set of the
regular indicial polynomials, which is not necessarily an ideal of C[s].
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Examples
• Appell’s F1 is defined by P1u = P2u = 0 with

P1 = x(1− x)∂2
x + y(1− x)∂x∂y + (c − (a + b1 + 1)x)∂x − b1y∂y − ab1,

P2 = y(1− y)∂2
y + x(1− y)∂x∂y + (c − (a + b2 + 1)y)∂y − b2x∂x − ab2.

and parameters a, b1, b2, c . Both the indicial and the regular indicial
polynomials along the origin (0, 0) are s(s + c − 1) for arbitrary values
of the parameters although DXu is holonomic if and only if c ̸= a+1.

• Let MA(β) be the A-hypergeometric (GKZ) system for an arbitrary
d × n integer matrix A s.t. rankA = d with parameters
β = (β1, . . . , βd). Then MA(β) is regular specializable along the
origin for any β (Oaku 2009). In particular we have an isomorphism

Extk(DX )0
(MA(β),C{x}) ≃ Extk(DX )0

(MA(β),C[[x ]]) (∀k ∈ Z).
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Kashiwara’s b-function

M : a coherent left DX -module.

OX : the sheaf of holomorphic functions on X .

f : a section of OX on X .

s : an inderminate (a parameter).

Lf := OX [f
−1, s]f s , the free OX [f

−1, s]-module generated by
the symbol f s .

⇒ Lf has a natural structure of left DX [s]-module.

⇒ M⊗OX
Lf has a structure of left DX [s]-module.

Toshinori Oaku Department of Mathematics, Tokyo Woman’s Christian UniversityOn various b-functions of specializable D-modules October 17, 2018 6 / 27



Definition (Kashiwara)

Kashiwara’s b-function of a germ u of M at x0 ∈ X w.r.t. f is the
monic polynomial b(s), if any, in an indeterminate s of the least
degree such that

P(s)(u ⊗ f s+1) = b(s)u ⊗ f s (∃P(s) ∈ DX [s]x0)

holds in M⊗OX
Lf . (If ord ∂x ,sP(s) ≤ deg b(s), we call b(s) regular.)

Theorem (Kashiwara 1976)

Kashiwara’s b-function exists if DXu is holonomic.

Kashiwara’s b-function coincides with the Bernstein-Sato polynomial
of f if M = OX and u = 1.
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Indicial polynomial w.r.t. a graph embedding

f : a holomorphic function on X .

ι : X ∋ x 7→ (x , f (x)) ∈ X × C.
Y = {x ∈ X | f (x) = 0}.
Z = ι(X ) = {(x , t) ∈ X × C | t = f (x)}.
BZ |X×C = H1

Z (OX×C) ∋ δ(t − f ) = [(t − f )−1].

M : a coherent left DX -module defined on X .

u : a section of M defined on a neighborhood of x0 ∈ Y .

ι∗M = M⊗OX
BZ |X×C : direct image by ι, which is a coherent

left DX×C-module with supp ι∗M ⊂ Z (Kashiwara equiv.).
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ι

Y
X

X × {0}

ι(X)

X ×C

Definition
The (regular) indicial polynomial of u w.r.t. the graph embedding by
f at x0 ∈ Y is the (regular) indicial polynomial of
ι∗(u) := u ⊗ δ(t − f ) ∈ ι∗M along X × {0} at (x0, 0).
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An example

Let MA(β) = DXu be the A-hypergeometric system for

A =

(
1 1 1
0 1 2

)
with parameters β = (β1, β2); i.e.,

(x1∂1 + x2∂2 + x3∂3 − β1)u = (x2∂2 + 2x3∂3 − β2)u

= (∂1∂3 − ∂2
2)u = 0.

The singular locus of MA(β) is

{(x1, x2, x3) ∈ C3 | x1x3(4x1x3 − x22 ) = 0}.

The indicial polynomial of u w.r.t. the graph embedding by
f := 4x1x3 − x22 at any point p ∈ C3 such that f (p) = 0 is
s(s − β1 − 1/2).
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Comparison between Kashiwara’s b-function and

indicial polynomial w.r.t. graph embedding

b0(s) : Kashiwara’s b-function of u w.r.t. f .

b1(s) : the indicial polynomial of u w.r.t. the graph embedding
by f .

Proposition

b0(s) is a factor of b1(−s − 1). Moreover, b0(s) and b1(−s − 1)
coincide if and only if f : DXu → DXu is injective at x0.

Example: If n = 1, M = DX/xDX , u = 1 ∈ M, f = x , then
b0(s) = 1 and b1(s) = s + 1.
∵) u ⊗ x s = xu ⊗ x s−1 = 0 in M⊗OX

Lf , but u ⊗ δ(t − x) ̸= 0 and
(t∂t +1)(u⊗ δ(t − x)) = ∂tt(u⊗ δ(t − x)) = ∂t(xu⊗ δ(t − x)) = 0.

Toshinori Oaku Department of Mathematics, Tokyo Woman’s Christian UniversityOn various b-functions of specializable D-modules October 17, 2018 11 / 27



Comparison between the indicial polynomials along

a hypersurface and w.r.t. graph embedding

— Non-singular case

Theorem
Assume that f is non-singular at x0 ∈ Y ; i.e., df ̸= 0 at x0. Then M
is (regular) specializable along Y at x0 if and only if ι∗M is (regular)
specializable along X × {0} at (x0, 0). Moreover, for any section u of
M near x0, the (regular) indicial polynomial of u along Y at x0
coincides with the (regular) indicial polynomial of u w.r.t. the graph
embedding by f at x0 (i.e., the (regular) indicial polynomial of ι∗(u)
along t = 0 at (x0, 0)).
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Proof

We may assume that X is an open set of Cn containing x0 = 0 ∈ Cn,
and that f = x1. We use the notation x = (x1, x

′) with
x ′ = (x2, . . . , xn) and ∂i = ∂/∂xi , ∂

′ = (∂2, . . . , ∂n). Let b(s) ∈ C[s]
be the (regular) indicial polynomial of u along Y at 0. Then there
exists a differential operator Q of the form Q = Q(x , x1∂1, ∂

′) such
that

(b(x1∂1) + x1Q(x , x1∂1, ∂
′))u = 0

(and ordQ ≤ deg b(s)).
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It follows that

(b(t(∂t + ∂1)) + tQ(x , t(∂t + ∂1), ∂
′))(u ⊗ δ(t − x1))

= ((b(x1∂1) + x1Q(x , x1∂1, ∂
′))u)⊗ δ(t − x1) = 0

since one has, for any v ∈ M,

(t−x1)(v⊗δ(t−x1)) = 0, (∂t+∂1)(v⊗δ(t−x1)) = (∂1v)⊗δ(t−x1).

There exists a differential operator R of the form R = R(t∂t , ∂1)
such that ordR = deg b(s) and

b(t(∂t + ∂1)) = b(t∂t) + tR(t∂t , ∂1),

Hence we have

(b(t∂t) + t(R(t∂t , ∂1) + Q(x , t(∂t + ∂1), ∂
′))(u ⊗ δ(t − x1)) = 0.
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Conversely, let b(s) be the (regular) indicial polynomial of
u ⊗ δ(t − x1) along t = 0 at 0. Then there eixsts a differential
operator Q of the form Q = Q(t, x , t∂t , ∂1, ∂

′) such that

(b(t∂t) + tQ(t, x , t∂t , ∂1, ∂
′))(u ⊗ δ(t − x1)) = 0

(and ordQ ≤ deg b(s)). By using t∂t = t(∂t + ∂1)− t∂1, we rewrite
the operator as

P := b(t∂t) + tQ(t, x , t∂t , ∂1, ∂
′)

= b(t(∂t + ∂1)) + tQ̃(t, x , t(∂t + ∂1), ∂1, ∂
′)

= b(t(∂t + ∂1)) + t
m∑
i=0

Qi(t, x , t(∂t + ∂1), ∂
′)∂ i

1.

We have
[t − x1,P](u ⊗ δ(t − x1)) = 0

with

[t − x1,P] = t
m∑
i=1

iQi(t, x , t(∂t + ∂1), ∂
′)∂ i−1

1 .
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It follows that

P̃ := b(t(∂t + ∂1)) + t
m∑
i=0

(
Qi(t, x , t(∂t + ∂1), ∂

′)∂ i
1

− i

m
∂1Qi(t, x , t(∂t + ∂1), ∂

′)∂ i−1
1

)
,

which is of order at most m − 1 with repect to ∂1, also annihilates
u ⊗ δ(t − x1). By induction, we get

((b(x1∂1) + Q0(x1, x , x1∂1, ∂
′))u)⊗ δ(t − x1)

= (b(t(∂t + ∂1)) + Q0(t, x , t(∂t + ∂1), ∂
′))(u ⊗ δ(t − x1)) = 0.

This implies

(b(x1∂1) + Q0(x1, x , x1∂1, ∂
′))u = 0.
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Higher codimensional case

— after Budur-Mustata-Saito

Y : an arbitrary closed analytic subset of X .

J : a coherent ideal of OX such that
√
J = IY .

f1, . . . , fd : a set of local generators of J on an neighborhood U
of x0 ∈ Y .

ι : U ∋ x 7−→ (x , f1(x), . . . , fd(x)) ∈ U × Cd .

Z = {(x , t1, . . . , td) ∈ U×Cd | t1−f1(x) = · · · = td−fd(x) = 0}.
BZ |U×Cd = Hd

[Z ](OU×Cd ) : the d-th local cohomology group.

M : a coherent left DX -module defined on X .

u : a section of M defined on a neighborhood of x0.

ι∗(u) = u ⊗ δ(t1 − f1) · · · δ(td − fd) ∈ M⊗OX
BZ |U×Cd .
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Definition-Theorem
Let b(s) be the (regular) indicial polynomial of ι∗(u) along U × {0}.
Then b(s − d) does not depend on the choice of local generators
f1, . . . , fd of J . We call b(s − d) the (regular) b-function of u w.r.t.
J .

A regular b-function of u w.r.t. J is not necessarily unique. The
above statement refers to the set of the regular b-functions.

If M = OX and u = 1, then the b-function in the above sense
conicides with b(−s), where b(s) is the Bernstein-Sato
polynomial of the variety (w.r.t. the ideal J ) defined by
Budur-Mustata-Saito (2006).

Toshinori Oaku Department of Mathematics, Tokyo Woman’s Christian UniversityOn various b-functions of specializable D-modules October 17, 2018 18 / 27



The following lemma describes the behavior of the indicial polynomial
via Kashiwara equivalence (direct image) w.r.t. an embedding:

Lemma (Budur-Mustata-Saito)

Let Y be a non-singular complex submanifold of X and let
ι : X → X × C be an embedding. Let M be a coherent left
DX -module and u a section of M near x0 ∈ Y . Let b(s) be the

(regular) indicial polynomial of u along Y at x0 ∈ Y and b̃(s) be

that of u⊗ δ(t) along ι(Y ) at (x0, 0). Then one has b̃(s − 1) = b(s).
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Proof of Lemma
We may assume Y = {x ∈ X | x1 = · · · = xd = 0} and ι(x) = (x , 0).
Then

ι(Y ) = {(x , 0) | x1 = · · · = xd = t = 0}.

There exists Q ∈ V−1
Y (DX ) such that

(b(x1∂1 + · · ·+ xd∂d) + Q)u = 0.

Then we have

(b(x1∂1 + · · ·+ xd∂d + ∂tt) + Q)(u ⊗ δ(t)) = 0

and Q belongs to Vι(Y )(DX×C). Thus b̃(s) is a factor of b(s + 1).
On the other hand, there exists Q ∈ V−1

ι(Y )(DX×C) such that

(b̃(x1∂1 + · · ·+ xd∂d + t∂t) + Q)(u ⊗ δ(t)) = 0.
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Writing Q in the form Q =
∑

i ,j≥0Qij(x , ∂)∂
i
tt

j , we have

0 = (b̃(x1∂1 + · · ·+ xd∂d + t∂t) + Q)(u ⊗ δ(t))

= b̃(x1∂1 + · · ·+ xd∂d + ∂tt − 1)(u ⊗ δ(t))

+
∑
i ,j≥0

Qij(x , ∂)u ⊗ ∂ i
tt

jδ(t)

= b̃(x1∂1 + · · ·+ xd∂d − 1)u ⊗ δ(t) +
∑
i≥0

Qi0(x , ∂)u ⊗ δ(i)(t).

This implies, in particular,

(b̃(x1∂1 + · · ·+ xd∂d − 1) + Q00)u = 0.

Since Q00 belongs to V−1
Y (DX ), we know that b(s) divides b̃(s − 1).

In conclusion, we get b(s) = b̃(s − 1).
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Proof of Definition-Theorem (following BMS)
Suppose that there exist sections a1, . . . , ad of OX at x0 such that
fd+1 = a1f1 + · · ·+ ad fd . (i.e., assume fd+1 is redundant.) Define an
embedding

ι : X × Cd −→ X × Cd+1 by

ι(x , t1, . . . , td) = (x , t1, . . . , td , a1(x)t1 + · · ·+ ad(x)td).

Set Z = {(x , t1, . . . , td) | t1 = · · · = td = 0}. Then we have

ι(Z ) = {(x , t1, . . . , td , td+1) | t1 = · · · = td = td+1 = 0}

and

ι∗(u ⊗ δ(t1 − f1) · · · δ(td − fd))

= u ⊗ δ(t1 − f1) · · · δ(td − fd)δ(td+1 − a1(x)t1 − · · · − ad(x)td)

= u ⊗ δ(t1 − f1) · · · δ(td − fd)δ(td+1 − a1(x)f1 − · · · − ad(x)fd)

= u ⊗ δ(t1 − f1) · · · δ(td − fd)δ(td+1 − fd+1).
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Let b(s) be the indicial poynomial of u ⊗ δ(t1 − f1) · · · δ(td − fd)
along Z , and b̃(s) be that of
u ⊗ δ(t1 − f1) · · · δ(td − fd)δ(td+1 − fd+1) along ι(Z ).

Then b(s − d) = b̃(s − d − 1) holds in view of Lemma.

Set bf1,...,fd (s) = b(s − d). Thus we have shown

bf1,...,fd (s) = bf1,...,fd ,fd+1
(s)

if

J = OX f1 + · · ·+OX fd = OX f1 + · · ·+OX fd +OX fd+1.

The general case can be reduced to this situation step by step.
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An example

With X = C3 ∋ (x , y , z), set J = OX (x
3 − y 2) +OX (x

2 − z), which
is the defining ideal of a monomial curve x3 − y 2 = x2 − z = 0.

The b-function b(s) of 1 ∈ OX w.r.t. J at 0 is
(s − 2)(6s − 11)(6s − 13).

The b-function of u such that ∂xu = ∂yu = (z∂z − a)u = 0
w.r.t. J at 0 is

b(s, a) = (s − 2)(s − a − 2)(2s − 2a − 5)(6s − 4a − 11)

× (6s − 4a − 13)(6s − 4a − 15)

if a ̸= 0,−1,−2.
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• If a = 0, then b(s) = (s − 2)(2s − 5)(6s − 11)(6s − 13) whereas
b(s, 0) = (s − 2)2(2s − 5)2(6s − 11)(6s − 13).

• If a = −1, then b(s) = (s − 1)(s − 2)(2s − 3)(6s − 7)(6s − 11)
whereas b(s,−1) = (s − 1)(s − 2)(2s − 3)2(6s − 7)(6s − 11).

• If a = −2, then b(s) = s(s − 2)(2s − 1)(6s − 5)(6s − 7) whereas
b(s,−2) = s(s − 2)(2s − 1)2(6s − 5)(6s − 7).
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Comparison between indicial polynomial and

b-function at a regular point

Theorem
Assume that Y is non-singular at x0. Let d be the codimension of Y
near x0. Let b(s) be the (regular) indicial polynomial of u along Y at
x0. Then the b-function of u w.r.t. IY is b(s − d).

This theorem also means that a (regular) b-function of u w.r.t. IY

exists (this condidition does not depend on the choice of local
generators of IY ) if and only if a (regular) indicial polynomial of u
along Y exists. The proof is similar to the one-codimensional case.
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(Regular) specializability along an arbitrary

subvariety

Definition
Let us call M (regular) specializable along Y if a (regular) b-function
of every section u of M w.r.t. IY (the defining ideal of Y ) exists.

If M is (regular) holonomic, then M is (regular) specializable
along any subvariety Y of X .
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