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Microlocal analysis of Feynman integrals was initiated by M. Sato,
T. Kawai, H.P. Stapp, M. Kashiwara, T. Oshima, et al. in the 1970’s.
Especially the theory of microfunctions and (holonomic systems of)
microdifferential equations played a decisive role.
Recently, N. Honda and Kawai studied the geometry of
Landau-Nakanishi surfaces systematically and discovered interesting
phenomena in the 2-dimensional space-time in a series of papers.
Following their work, I will report on actual computation of
holonomic systems for Feynman integrals associated with very simple
Feynman diagrams below by computer.
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Feynman diagrams and Feynman integrals
Let G be a connected Feynman graph (diagram), i.e., G consists of

vertices V1, · · · , Vn′ ,

oriented line segments L1, . . . , LN called internal lines,

oriented half-lines Le1, . . . , L
e
n called external lines.

The end-points of each internal line Ll are two distinct vertices, and
each external line has only one end-point, which coincides with one of
the vertices.
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• We associate ν-dimensional vector pr to each external line Ler
(1 ≤ r ≤ n′),
and ν-dimensional vector kl and a positive real number ml to each
internal line Ll (1 ≤ l ≤ N).
• For a vertex Vj and an internal or external line Ll , the incidence
number [j : l ] is defined as follows:

[j : l ] = 1 if Ll ends at Vj ,

[j : l ] = −1 if Ll starts from Vj ,

[j : l ] = 0 otherwise.
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The Feynman integral associated with G is defined to be

FG (p1, . . . ,pn)

=

∫
RνN

∏n′

j=1 δ
ν
(∑n

r=1[j : r ]pr +
∑N

l=1[j : l ]kl
)

∏N
l=1(k

2
l −m2

l +
√
−10)

N∏
l=1

dνkl .

Here δν denotes the ν-dimensional delta function,

k2l := k2
l0 − k2

l1 − · · · − k2
lν

is the Lorentz norm of kl = (kl0, kl1, · · · , klν), and dνkl is the
ν-dimensional volume element.
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The Feynman phase space integral associated with G is defined to be

IG (p1, . . . ,pn)

=

∫
RνN

n′∏
j=1

δν
( n∑

r=1

[j : r ]pr +
N∑
l=1

[j : l ]kl
) N∏

l=1

δ+(k
2
l −m2

l )
N∏
l=1

dνkl .

Here we denote

δ+(k
2
l −m2

l ) = Y (kl0)δ(k
2
l −m2

l )

with the Heaviside function Y .
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In what follows, we assume that for each vertex Vj , there exists a
unique external line, which we may assume to be Lej , that ends at Vj

and that no external line starts from Vj . Then n = n′ holds and the
Feynman integral is

FG (p1, . . . ,pn) =

∫
RνN

∏n
j=1 δ

ν
(
pj +

∑N
l=1[j : l ]kl

)
∏N

l=1(k
2
l −m2

l +
√
−10)

N∏
l=1

dνkl
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Well-definedness of Feynman phase space integrals

It should be well-known and is easy to prove

Proposition
If the Feynman graph G has no oriented cycles, then the Feynman
phase space integral

IG (p1, . . . ,pn)

=

∫
RνN

n∏
j=1

δν
(
pj +

N∑
l=1

[j : l ]kl
) N∏

l=1

δ+(k
2
l −m2

l )
N∏
l=1

dνkl

is well-defined as a hyperfunction on Rνn.
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Rewriting the Feynman integral

The delta factors of the integrand of the Feynman integral
correspond to the linear equations (momentum preservation)

pj +
N∑
l=1

[j : l ]kl = 0 (1 ≤ j ≤ n)

for indeterminates pj and kl which correspond to the vectors pj and
kl . These equations define an N-dimensional linear subspace of
Rn+N , which is contained in the hyperplane p1 + · · ·+ pn = 0 since∑n

j=1[j : l ] = 0.
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Lemma
Let A be the n × N matrix whose (j , l)-element is [j : l ]. Then the
rank of A is n − 1.

For the example below, the matrix A is given by

A =


−1 −1 −1 0 0 0
0 0 1 −1 −1 0
1 1 0 1 0 −1
0 0 0 0 1 1


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In view of the lemma above, we can choose a set of indices

J = {l1, . . . , lN−n+1} ⊂ {1 . . . ,N}

and integers alr and blj so that the system

pj +
N∑
l=1

[j : l ]kl = 0 (1 ≤ j ≤ n)

of linear equations is equivalent to

n∑
j=1

pj = 0, kl − ψl(p1, . . . , pn−1, kl1 , . . . , klN−n+1
) = 0 (l ∈ Jc).
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Then the Feynman integral is written in the form

FG (p1, . . . ,pn) =

∫
RNν

δ(p1 + · · ·+ pn)

×
∏
l∈Jc

δ(kl − ψl(p1, . . . ,pn−1, kl1 , . . . , klN−n+1
))

×
N∏
l=1

(k2l −m2
l +

√
−10)−1

N∏
l=1

dkl

= δ(p1 + · · ·+ pn)F̃G (p1, . . . ,pn−1)

with the amplitude function

F̃G (p1, . . . ,pn−1) =

∫
R(N−n+1)ν

∏
l∈J

(k2l −m2
l +

√
−10)−1

×
∏
l∈Jc

(ψl(p1, . . . ,pn−1, kl1 , . . . , klN−n+1
)2 −m2

l +
√
−10)−1

∏
l∈J

dkl .
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The Feynman phase space integral is written in the form

IG (p1, . . . ,pn) = δ(p1 + · · ·+ pn)ĨG (p1, . . . ,pn−1)

with the amplitude

ĨG (p1, . . . ,pn−1) =

∫
R(N−n+1)ν

∏
l∈J

δ+(k
2
l −m2

l )

×
∏
l∈Jc

δ+(ψl(p1, . . . ,pn−1, kl1 , . . . , klN−n+1
)2 −m2

l )
∏
l∈J

dkl .
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Holonomic systems for integrands

In general, since dkl (l ∈ J) and dψl (l ∈ Jc) are linearly
independent, the integrand Φ of F̃G is well-defined as a hyperfunction
on RN , represented as the boundary value of the rational function

Φ̃(p1, . . . ,pn−1, kl1 , . . . , klN−n+1
)

=
∏
l∈J

(k2l −m2
l )

−1
∏
l∈Jc

(ψl(p1, . . . ,pn−1, kl1 , . . . , klN−n+1
)2 −m2

l )
−1

on CνN .
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Let DνN be the ring of differential operators with polynomial
coefficients in p1, . . . ,pn−1, kl1 , . . . , klN−1

and BRνN the sheaf of
hyperfunctions on RνN . Then the annihilator (left ideal of DνN)

AnnDνN
Φ = {P ∈ DνN | PΦ = 0 in BRνN (RνN)}

of Φ is contained in the annihilator

AnnDνN
Φ̃ = {P ∈ DνN | PΦ̃ = 0 as rational function}

of Φ̃. There exists a general algorithm to compute the annihilator of
an arbitrary rational function. However, since the denominator of Φ̃ is
the product of polynomials whose differentials are linearly
independent at each point, the annihilator of Φ̃ is generated by first
order differential operators, which are much easier to compute.
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The annihilator of the integrand Ψ of ĨG is contained in the
annihilator of the local cohomology class [Φ̃] of the rational function
Φ̃ in the local cohomology group

HN
Z (C[p1, . . . ,pn−1, kl1 , . . . , klN−n+1

])

with the N-codimensional non-singular algebraic set

Z = {(p1, . . . ,pn−1, kl1 , . . . , klN−n+1
) ∈ CνN |

k2l −m2
l = 0 (l ∈ J),

ψl(p1, . . . ,pn−1, kl1 , . . . , klN−n+1
)2 −m2

l = 0 (l ∈ Jc)}

and is generated by zeroth and first order operators, which are easy
to compute. Note that the annhilator of the rational function Φ̃ is
contained in that of the local cohomology class [Φ̃].
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Landau-Nakanishi varieties for amplitudes
Set

Λ(G ) = {(p1, . . . ,pn−1, kl1 , . . . , klN−n+1
;u1, . . . ,un−1;α1, . . . , αN)

∈ RνN × Rν(n−1) × RN |
αlj (k

2
lj
−m2

lj
) = 0 (1 ≤ j ≤ N − n + 1),

αl(ψ
2
l −m2

l ) = 0 (l ∈ Jc),

αljklj +
∑
l∈Jc

αlbljψl = 0 (1 ≤ j ≤ N − n + 1),

ur =
∑
l∈Jc

αlalrψl (1 ≤ r ≤ n − 1),

αl ≥ 0 (1 ≤ l ≤ N)}
with

ψl =
n−1∑
r=1

alrpr +
N−n+1∑
j=1

bljklj .
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and

Λ+(G ) = {(p1, . . . ,pn−1, kl1 , . . . , klN−n+1
;u1, . . . ,un−1;α1, . . . , αN)

∈ RνN × Rν(n−1) × RN |
αlj (k

2
lj
−m2

lj
) = 0 (1 ≤ j ≤ N − n + 1),

αl(ψ
2
l −m2

l ) = 0 (l ∈ Jc),

αljklj +
∑
l∈Jc

αlbljψl = 0 (1 ≤ j ≤ N − n + 1),

ur =
∑
l∈Jc

αlalrψl (1 ≤ r ≤ n − 1),

αl > 0 (1 ≤ l ≤ N)}.
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Let ϖ be the natural projection of Λ(G ) to the (purely imaginary)
cotangent bundle

√
−1T ∗Rν(n−1)

= {(p1, . . . ,pn−1;
√
−1u1dp1 + · · ·+

√
−1un−1dpn−1)}.

Then the amplitude F̃G is well-defined as a microfunction on the set

√
−1T ∗Rν(n−1) \ϖ

(
Λ(G ) \ Λ+(G )

)
and its support is contained in ϖ(Λ+(G )).
Moreover F̃G satisfies the D-module theoretic integration (direct
image) of DνN/AnnDνN

Φ̃ along the fibers of the projection

CνN ∋ (p1, . . . ,pn−1; kl1 , . . . , klN−n+1
) 7−→ (p1, . . . ,pn−1) ∈ Cν(n−1).
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Invariance under Lorentz transformations

The functions FG , F̃G , IG , ĨG are invariant under the action of the
Lorentz group: Let T be a ν × ν matrix such that

tT

1 0 . . . 0
0 −1 . . . 0
0 0 . . . −1

T =

1 0 . . . 0
0 −1 . . . 0
0 0 . . . −1

 .

Then one has

FG (Tp1, . . . ,Tpn−1,Tpn) = FG (p1, . . . ,pn−1,pn),

F̃G (Tp1, . . . ,Tpn−1) = F̃G (p1, . . . ,pn−1)
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Some examples in the two-dimensional space-time

In the sequel, we set ν = 2 and consider Feynman integrals and
Feynman phase space integrals associated with some simple Feynman
diagrams.
In general, for a two-dimensional vector p = (p0, p1), we denote
p2 = p20 − p21 for the Lorentz norm and dp = dp0dp1 for the volume
element.
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Example 1
Let us study the Feynman diagram G below:

p1 p2

k1

k2

Then the Feynman integral is written in the form

FG (p1,p2) =

∫
R4

δ(p1 − k1 − k2)δ(−p2 + k1 + k2)

× (k21 −m2
1 +

√
−10)−1(k22 −m2

2 +
√
−10)−1 dk1dk2

= δ(p1 − p2)F̃G (p1)

with the amplitude

F̃G (p1) =

∫
R2

(k21 −m2
1 +

√
−10)−1((p1 − k1)

2 −m2
2 +

√
−10)−1 dk1.
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The amplitude F̃G (p1) is well-defined as a microfunction on√
−1T ∗R2 \ R2, i.e., the whole cotangent bundle with the zero

section removed. In other words, F̃G (p1) is well-defined as a section
of the sheaf BR2/AR2 on R2.
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F̃G (p1) satisfies a holonomic system M = D2/I with the left ideal I
generated by three operators

p11∂p10 + p10∂p11 ,

(p10 −m1 −m2)(p10 −m1 +m2)(p10 +m1 −m2)(p10 +m1 +m2)∂p10

+ p11p10(2p
2
10 − p211 − 2m2

1 − 2m2
2)∂p11

+ 2p310 + (−2p211 − 2m2
1 − 2m2

2)p10,

(p210 − p211 − (m1 +m2)
2)(p210 − p211 − (m1 −m2)

2)∂p11

− 2p11p
2
10 + 2p311 + (2m2

1 + 2m2
2)p11.
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The characteristic variety of M is

Char(M) = {(p10, p11;
√
−1(u10dp10 + u11dp11) | u10 = u11 = 0}

∪ {p210 − p211 − (m1 +m2)
2 = u11p10 + u10p11 = 0}

∪ {p210 − p211 − (m1 −m2)
2 = u11p10 + u10p11 = 0}

with each component of multiplicity one if m1 ̸= m2 and

Char(M) = {(p10, p11;
√
−1(u10dp10 + u11dp11) | u10 = u11 = 0}

∪ {p210 − p211 − 4m2 = u11p10 + u10p11 = 0}
∪ {p10 − p11 = u10 + u11 = 0}
∪ {p10 + p11 = u10 − u11 = 0}
∪ {p10 = p11 = 0}

with each component of multiplicity one if m1 = m2 = m.
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In view of the invariance under Lorentz transformations, let us set
p1 = (x , 0) with x ̸= 0. Then F̃G (x , 0) satisfies

{(x −m1 −m2)(x −m1 +m2)(x +m1 −m2)(x +m1 +m2)∂x

+ 2x(x2 −m2
1 −m2

2)}F̃G (x , 0) = 0.

Hence the support of F̃G (x , 0) is contained in the set

{(x ;
√
−1udx) | x = ±(m1 +m2),±(m1 −m2)}

and one has, for example

F̃G ((x , 0)) = C (x −m1 +m2)
−1/2(x +m1 −m2)

−1/2

× (x +m1 +m2)
−1/2(x −m1 −m2 +

√
−10)−1/2

at (m1 +m2;
√
−1dx) as a microfunction if m1 ̸= m2.
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If m1 = m2 = m, then the support of F̃G ((x , 0)) is contained in
{x = 0,±2m} and one has

F̃G ((x , 0)) = Cx−1(x + 2m)−1/2(x − 2m +
√
−10)−1/2

at (2m,
√
−1dx).

ĨG ((x , 0)) satisfies the same differential equation as F̃G ((x , 0)).
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Example 2

The Feynman integral associated with the graph G below

p1 p2

k1

k3

k2

is given by

FG (p1,p2) = δ(p1 − p2)F̃G (p1)

with

F̃G (p1) =

∫
R4

(k21 −m2
1 +

√
−10)−1(k22 −m2

2 +
√
−10)−1

× ((p1 − k1 − k2)
2 −m2

3 +
√
−10)−1 dk1dk2.
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We can confirm that F̃G (p1) is well-defined as a microfunction on√
−1T ∗R2 \ R2 and its support (singular spectrum) is contained in

{p210 − p211 − (−m1 +m2 +m3)
2 = u11p10 + u10p11 = 0}

∪ {p210 − p211 − (m1 −m2 +m3)
2 = u11p10 + u10p11 = 0}

∪ {p210 − p211 − (m1 +m2 −m3)
2 = u11p10 + u10p11 = 0}

∪ {p210 − p211 − (m1 +m2 +m3)
2 = u11p10 + u10p11 = 0}

for generic m1,m2,m3.
We compute holonomic systems for F̃G ((x , 0)) by assigning some
special values to m1,m2,m3 since the computation for general
m1,m2,m3 (as parameters) is intractable.
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First let us set m1 = 1, m2 = 2, m3 = 4 so that (−m1 +m2 +m3)
2,

(m1 −m2 +m3)
2, (m1 +m2 −m3)

2 are distinct. Then F̃G ((x , 0)) is
annihilated by the differential operator

30x(x − 1)(x + 1)(x − 3)(x + 3)(x − 5)(x + 5)(x − 7)(x + 7)∂3x

+ (−2x12 + 191x10 − 5340x8 + 35954x6 + 273082x4

− 2071305x2 + 661500)∂2x

+ (−10x11 + 675x9 − 12108x7 + 15454x5 + 936462x3

− 2692665x)∂x

− 8x10 + 372x8 − 3300x6 − 36028x4 + 457932x2 − 356760.

The singular points x = 0,±1,±3,±5,±7 are all regular and the
indicial equations are all s2(s − 1). This implies
F̃G ((x , 0)) = U log(x + i0) e.g., at (1,

√
−1dx) with a

microdifferential operator of order zero.
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Next set m1 = m2 = m3 = 1. Then F̃G ((x , 0)) is annihilated by

x(x − 1)(x + 1)(x − 3)(x + 3)∂2x + (5x4 − 30x2 + 9)∂x + 4x3 − 12x .

The points 0,±1,±3 are regular singular and the indicial equations
at these points are all s2.
This implies F̃G ((x , 0)) = U log(x − 1 + i0) e.g., at (1,

√
−1dx) with

a microdifferential operator of order zero.

ĨG ((x , 0)) satisfies the same differential equation as F̃G ((x , 0)).
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Example 3

The Feynman integral associated with the graph G below

p1 p2

p3

k1

k2

k3

is given by

FG (p1,p2,p3) = δ(p1 − p2 − p3)F̃G (p1,p2)

with

F̃G (p1,p2) =

∫
R2

(k21 −m2
1 +

√
−10)−1

× ((p1 − k1)
2 −m2

2 +
√
−10)−1)−1((p2 − k1)

2 −m2
3 +

√
−10)−1 dk1.
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Computation for general m1,m2,m3 are beyond of my (computer’s)
ability.
So let us set m1 = m2 = m3 = 1 in the sequel.
In this situation, the Landau-Nakanishi variety was investigated by
N. Honda and T. Kawai in detail.
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The amplitude F̃G ((x , 0), (y , z)) is well-defined on

{(x , y , z ;
√
−1(udx + vdy + wdz) | (u, v ,w) ̸= (0, 0, 0)}

\
(
{(x − y)2 − z2 − 4 = wx − wy + vz = u + v = 0}

∪ {x − y = z = u + v = 0}
∪ {y 2 − z2 − 4 = wy − vz = u = 0}

∪ {x2 − 4 = v = w = 0} ∪ {x = v = w = 0}
)

as a microfunction and its support is contained in
√
−1T ∗

{f=0}R3 ∪
√
−1T ∗

{x=y=z=0}R3 ∪
√
−1T ∗

{y=z=0}R3

with

f = (y − z)(y + z)x2 − 2(y − z)(y + z)yx + (y − z)2(y + z)2 + 4z2,

where we denote by T ∗
SR3 the closure of the conormal bundle of the

regular part of a real analytic set S of R3.
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We can compute a holonomic system M = D3/I for
F̃G ((x , 0), (y , z)), which is too complicated to show here; we get 74
generators of the left ideal I . The characteristic variety of M is

C3 ∪ T ∗
{f=0}C3 ∪ T ∗

{x=f=0}C3

∪ T ∗
{(x−y)2−z2−4=0}C

3 ∪ T ∗
{y2−z2−4=0}C

3

∪ T ∗
{x−y−z=0}C3 ∪ T ∗

{x−y+z=0}C3

∪ T ∗
{y−z=0}C3 ∪ T ∗

{y+z=0}C3 ∪ T ∗
{x=0}C3 ∪ T ∗

{x−2=0}C3 ∪ T ∗
{x+2=0}C3

∪ T ∗
{x=y2−z2−4=0}C

3 ∪ T ∗
{x=y−z=0}C3 ∪ T ∗

{x=y+z=0}C3

∪ T ∗
{x−y=z=0}C3 ∪ T ∗

{y=z=0}C3 ∪ T ∗
{x=y=z=0}C3,

where we denote by T ∗
ZC3 the closure of the conormal bundle of the

regular part of an analytic set Z of C3.
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On the other hand, the amplitude ĨG ((x , 0), (y , z)) of the Feynman
phase space integral satisfies a holonomic system M ′ = D3/I

′, which
is strictly stronger than M , i.e, I ⊊ I ′. The characteristic variety of
M ′ is

T ∗
{f=0}C3 ∪ T ∗

{x=f=0}C3 ∪ T ∗
{x=0}C3

∪ T ∗
{x=y−z=0}C3 ∪ T ∗

{x=y+z=0}C3 ∪ T ∗
{x=y=z=0}C3,

which is much smaller than that of M . In particular, the support of
M ′ as D-module is contained in the hypersurface f = 0.
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Singularities of the surface f = 0

Let us investigate the singularities of the complex surface

Z = {(x , y , z) ∈ C3 | f (x , y , z) = 0},
f = (y − z)(y + z)x2 − 2(y − z)(y + z)yx + (y − z)2(y + z)2 + 4z2.

Following N. Honda and T. Kawai, we rewrite f as

f = yzx2 − yz(y + z)x + y 2z2 + (y − z)2

by change of coordinates (y + z , y − z) → (y , z).
Then the singular locus of Z is the union of two complex lines
{x = y = z} and {y = z = 0}.
The projection Z ∋ (x , y , z) 7→ (y , z) defines a doube covering on
{(x , y) | xy ̸= 0} branched along the union of curves y − z = 0 and
yz − 4 = 0.
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The stratification of Z with respect to the (local) b-function bf ,p(s)
of f at a point p is

strata bf ,p(s)

{(0, 0, 0)} (s + 1)3(2s + 3)
{(2, 0, 0), (−2, 0, 0), (2, 2, 2), (−2,−2,−2)} (s + 1)2(2s + 3)
{x = y = z} ∪ {y = z = 0} (s + 1)2

\{(0, 0, 0), (±2, 0, 0),±(2, 2, 2)}
{f = 0} \ ({x = y = z} ∪ {y = z = 0}) s + 1

In comparison, that of g := x2 − y 2z (Whitney umbrella) is
strata bg ,p(s)

{(0, 0, 0)} (s + 1)2(2s + 3)
{x = y = 0} \ {(0, 0, 0)} (s + 1)2

{g = 0} \ {x = y = 0} s + 1
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Cross section of F̃G
In order to guess the multiplicity and the exponent (order) of F̃G

along the conormal bundle of f = 0 at a non-singular point, we
compute the restriction of the holonomic system M to a generic line.
For example, we can take L = {(x , y , z) | y = 1, z = 2}. The
restriction of f to L is −3x2 + 6x + 25 = −(3x2 − 6x − 25), which
have two real roots α and 2− α. Then F (x) := F̃G ((x , 0), (1, 2)) is
annihilated by a 5th order differential operator

P = 147316552073926635122538062595769976812320x(x − 3)

× (x − 2)(x + 1)(x + 2)(x2 − 2x − 7)(3x2 − 6x − 25)∂5x

+ (2871432833964372040345167998282243508711x19 + · · · )∂4x
+ · · ·

The indicial polynomial at α is s(s − 1)(s − 2)(s − 3)(s + 1). Hence

F̃G ((x , 0), (1, 2)) = U(x − α +
√
−10)−1

at (α,
√
−1dx) with a microdifferential operator U of order 0.

Toshinori Oaku Department of Mathematics, Tokyo Woman’s Christian UniversityAn attempt to compute holonomic systems for Feynman integrals in two-dimensional space-timeOctober 20, 2017 39 / 46



Landau-Nakanishi surface for general m1,m2,m3

F̃G ((x , 0), (y , z)) is well-defined on

{(x , y , z ;
√
−1(udx + vdy + wdz) | (u, v ,w) ̸= (0, 0, 0)}

\
(
{(x − y)2 − z2 − (m2 −m3)

2 = wx − wy + vz = u + v = 0}

{(x − y)2 − z2 − (m2 +m3)
2 = wx − wy + vz = u + v = 0}

∪ {y 2 − z2 − (m1 −m3)
2 = wy − vz = u = 0}

∪ {y 2 − z2 − (m1 +m3)
2 = wy − vz = u = 0}

∪ {x +m1 +m2 = v = w = 0}
∪ {x +m1 −m2 = v = w = 0}
∪ {x −m1 +m2 = v = w = 0}
∪ {x −m1 −m2 = v = w = 0} ∪ {x = v = w = 0}

as a microfunction

Toshinori Oaku Department of Mathematics, Tokyo Woman’s Christian UniversityAn attempt to compute holonomic systems for Feynman integrals in two-dimensional space-timeOctober 20, 2017 40 / 46



and the projection of its (micro-)support to the base space R3 is
contained in the (Landau-Nakanishi) surface f (x , y , z) = 0 with

f =(y 2 − z2)x4 + (−2y 3 + (2z2 − 2m2
1 + 2m2

3)y)x
3

+ (y 4 + (−2z2 + 4m2
1 − 2m2

2 − 2m2
3)y

2 + z4

+ (2m2
2 + 2m2

3)z
2 +m4

1 − 2m2
3m

2
1 +m4

3)x
2

+ ((−2m2
1 + 2m2

2)y
3 + ((2m2

1 − 2m2
2)z

2 − 2m4
1

+ (2m2
2 + 2m2

3)m
2
1 − 2m2

3m
2
2)y)x

+ (m4
1 − 2m2

2m
2
1 +m4

2)y
2 + (−m4

1 + 2m2
2m

2
1 −m4

2)z
2.

Toshinori Oaku Department of Mathematics, Tokyo Woman’s Christian UniversityAn attempt to compute holonomic systems for Feynman integrals in two-dimensional space-timeOctober 20, 2017 41 / 46



By the coordinate transformation (y + z , y − z) → (y , z), f becomes

f = zyx4 − (y + z)(zy +m2
1 −m2

3)x
3

+ {(z2 +m2
1)y

2 + 2(m2
1 −m2

2 −m2
3)zy +m2

1z
2 + (m2

1 −m2
3)

2}x2

− (m1 −m2)(m1 +m2)(y + z)(zy +m2
1 −m2

3)x

+ (m1 −m2)
2(m1 +m2)

2zy .

The singular locus of f = 0 is given by

{f = fx = fy = fz = 0}
= {y − z = −zx2 + (z2 +m2

1 −m2
3)x + (−m2

1 +m2
2)z = 0}

∪{x = m1 −m2 = 0} ∪ {x = m1 +m2 = 0}
∪{x2 + (−y − z)xm2

1 −m2
2 = zy −m2

1 = m3 = 0}
∪{(z +m1)y +m1z +m2

1 −m2
3 = x +m1 = m2 = 0}

∪{(z −m1)y −m1z +m2
1 −m2

3 = x −m1 = m2 = 0}
∪{zy −m2

3 = x +m2 = m1 = 0} ∪ {zy −m2
3 = x −m2 = m1 = 0}.
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For example, if m1 = 1, m2 = 2, m3 = 3 (probably generic case),
then the local b-function bf ,p(s) of f at p = (x , y , z) defined by the
equations

y − z = z4 − 20z2 + 64 = 8x2 − (z3 − 12z)x − 24 = 0

is (s + 1)2(2s + 3), which is the same as that of the Whitney
umbrella. There are 8 such points p, which are all in R3.
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If m1 = 2, m2 = m3 = 1, then the local b-function bf ,p(s) of f at
p = ±(

√
3,
√
3,
√
3) is (s + 1)3(2s + 3). This implies that the

singularity at p of f is not analytically equivalent to the Whitney
umbrella.
The projection to the xy -space of the singular locus of f = 0 is as
below:
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If m1 = 1, m2 = m3 = 2, then the local b-function bf ,p(s) of f at
p = ±(

√
−3,

√
−3,

√
−3) is (s + 1)3(2s + 3).
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