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Microlocal analysis of Feynman integrals was initiated by M. Sato,
T. Kawai, H.P. Stapp, M. Kashiwara, T. Oshima, et al. in the 1970’s.
Especially the theory of microfunctions and (holonomic systems of)
microdifferential equations played a decisive role.
Recently, N. Honda and Kawai studied the geometry of
Landau-Nakanishi surfaces systematically and discovered interesting
phenomena in the 2-dimensional space-time in a series of papers.
Following their work, | will report on actual computation of
holonomic systems for Feynman integrals associated with very simple
Feynman diagrams below by computer.
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Feynman diagrams and Feynman integrals

Let G be a connected Feynman graph (diagram), i.e., G consists of

@ vertices Vi, ---, V,,
@ oriented line segments Ly, ..., Ly called internal lines,
@ oriented half-lines L, ..., L called external lines.

The end-points of each internal line L, are two distinct vertices, and

each external line has only one end-point, which coincides with one of
the vertices.

Ly
Ly

Toshinori Oaku Department of Mathematics,An attempt to compute holonomic systems fc October 20, 2017 3 /46



e We associate v-dimensional vector p, to each external line L}

(1<r<n),

and v-dimensional vector k; and a positive real number m; to each

internal line L, (1 </ < N).

e For a vertex Vj and an internal or external line L;, the incidence

number [} : /] is defined as follows:

[ :/]=11if L, ends at V},
[/ : [] = —1if L, starts from V;,
[/ : /] = 0 otherwise.
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The Feynman integral associated with G is defined to be

Fe(pP1;---,Pn)

"7/—15V rali s rlpe ;\I:l.: .
[ (Sl doe S ) o
o 1Y, (K} — m? + v/=10) -1

Here ¥ denotes the v-dimensional delta function,
2. 12 2 2
ki = kio — kip — -+ — ki,

is the Lorentz norm of k; = (kjo, ki1, -+ , ki), and d”k; is the
v-dimensional volume element.
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The Feynman phase space integral associated with G is defined to be

/G(pla .. '7pn)

= /RVN ﬁé” (i[j rlp, + ib ; /]k/) ﬂ&r(k% — m,2) l_N[ d"k;.

=1
Here we denote
04 (ki — mi) = Y (kio)d (ki — m})

with the Heaviside function Y.
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In what follows, we assume that for each vertex V;, there exists a
unique external line, which we may assume to be L7, that ends at Vj
and that no external line starts from V;. Then n = n’ holds and the
Feynman integral is

[T 0 (b + S0 ki)

d"k,
ren o [l (k2 — m? + /=10) ,Ul

FG(pla"'vpn):
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Well-definedness of Feynman phase space integrals

It should be well-known and is easy to prove

Proposition
If the Feynman graph G has no oriented cycles, then the Feynman
phase space integral

/G(p17 0 © ~7pn)

n N N N
_ /R TTo (i + D0 ki) TT 04k — m?) [T "k
j=1 I=1 I=1

I=1

is well-defined as a hyperfunction on R"".
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Rewriting the Feynman integral

The delta factors of the integrand of the Feynman integral
correspond to the linear equations (momentum preservation)

N
pi+> k=0 (1<j<n)
I=1

for indeterminates p; and k; which correspond to the vectors p; and
k;. These equations define an N-dimensional linear subspace of
RN which is contained in the hyperplane p; + - - - 4+ p, = 0 since

Srlizn=o.
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Lemma
Let A be the n x N matrix whose (j, /)-element is [j : /]. Then the
rank of Ais n — 1.

For the example below, the matrix A is given by

-1 -1 -1 0 0 O

a_ 0o 0o 1 110
(1 1 0 1 0 -1
0 0 0 0 1 1
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In view of the lemma above, we can choose a set of indices

J:{/]_,...,/N,,,Jr]_}C{l...,N}

and integers a; and b so that the system

N
pi+> k=0 (1<j<n)
=1
of linear equations is equivalent to

ij =0, k— d)/(pla ooy Pty Ky k/anH) =0 (l € JC)‘
j=1
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Then the Feynman integral is written in the form

Fc(pl,---,pn)z/ o(p1+ -+ pn)
RN}/

X H 5(k/ - 1/1/(p1, NN T TP k/,\,_n+1))
leJe

N N
< [[(k} = m7 + v=10)" ] ] dki
I=1 I=1

=d(p1+ -+ pn)Fe(pP1,...,Pn-1)
with the amplitude function

ﬁG(pl;H-ypn—l) —/ H(k%—mlz—f—\/—lO)—l
R(N=n+1)v

led

< [TWi(p1, - - pocr ki, ki, )* = mi +V=10)"" ] ] dki.

leJe leJ
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The Feynman phase space integral is written in the form

le(P1,---,Pn) =0(P1+ -+ Pn)lc(P1,---,Pn-1)

with the amplitude

Is(P1y ... Pot1) = 6 (k?> — m?
c(p1 Pr-1) /R(N_"H)yg +(kj —myp)

< [T o+ilpe, - poev ks ki) = mi) [ ] dke

leJe leJ
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Holonomic systems for integrands

In general, since dk; (/ € J) and dv; (I € J¢) are linearly
independent, the integrand ® of F¢ is well-defined as a hyperfunction
on RV, represented as the boundary value of the rational function

O(p1, .-, Pt kis o ki)
= ]‘_[(kl2 - m,2)*1 H(wl(pla o5 Pn—1, k/1= SRR k/N—n+1)2 - mlz)il

leJ leJe

on C"VN.
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Let D,y be the ring of differential operators with polynomial
coefficients in p1,...,Pn-1,Kg, ..., kj_, and Bgon the sheaf of
hyperfunctions on R*V. Then the annihilator (left ideal of D,y)

AIlIlDVNq) = {P € D,y | P®=0in BRVN(RVN)}
of @ is contained in the annihilator
Annp, ,® = {P € D,y | P® = 0 as rational function}

of ®. There exists a general algorithm to compute the annihilator of
an arbitrary rational function. However, since the denominator of d is
the product of polynomials whose differentials are linearly
independent at each point, the annihilator of ® is generated by first
order differential operators, which are much easier to compute.
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The annihilator of the integrand W of Ig is contained in the
annihilator of the local cohomology class [®] of the rational function
® in the local cohomology group

HY(Clp1, .- po-t. ki, - Kiy_, )
with the N-codimensional non-singular algebraic set
Z = {(p17 «o oy Pn—1, k/17 ) klN—n+1) € (CVN ‘
k2 —m?=0(l¢€lJ),
Ui(pr - Pa-1, Ky k)P —mp =0 (1€ J9)}

and is generated by zeroth and first order operators, which are easy
to compute. Note that the annhilator of the rational function & is
contained in that of the local cohomology class [®].

Toshinori Oaku Department of Mathematics,An attempt to compute holonomic systems fc October 20, 2017 16 / 46



Landau-Nakanishi varieties for amplitudes
Set
NG) ={(P1,--- Pn-1, ks, Kpy iU, Up g O, )
€ RN x RV x RV |
ap(ki =mj)=0(1<j<N-n+1),
a(f —mj) =0 (I € J°),

Oé/Jk/J—I—ZOé/b/J@/)/:O(].S_]S N—n+1),
leJe

= Zoé/a/ﬂ/)/ (1<r<n-1),

leJe

a;>0(1</<N)}

with
N—n+1

Zalrpr+ Z bjkj;.
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and

Ai(G) ={(p1, - Pn-1, ki, .-, Ky iUt Uy, )
e RN x RN 5 RV |
ap(kf —mp)=0(1<j<N-n+1),
a(yf —mj) =0 (I € J°),

oz,jk,j—kZa,b,jw, =0 (1 SJS N—n+1),
leJe

u, = Za/a/r@DI (1<r<n-1),

leJe

a;>0(1<1<N)}
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Let @ be the natural projection of A(G) to the (purely imaginary)
cotangent bundle

/_1 T*Ru(nfl)
={(p1;---,Pr—1; V—1urdpy + --- + vV —1u,_1dp,_1)}.

Then the amplitude F¢ is well-defined as a microfunction on the set
V=1T*R" D\ o (A(G) \ A(G))

and its support is contained in w(A,(G)).
Moreover F¢ satisfies the D-module theoretic integration (direct
image) of D,n/Annp ,® along the fibers of the projection

CvN 5 (P1, - s Pn-1: Kis - -y k/N7n+1) — (P1,- .-, Pn_1) € cv(n-1).
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Invariance under Lorentz transformations

The functions Fg, F'G, g, I~G are invariant under the action of the
Lorentz group: Let T be a v X v matrix such that

1 0 0 1 0 0
‘T{o -1 0| T=1(0 -1 0
0 O -1 0 O -1

Then one has

FG(pr SRR Tpn—la Tpn) - FG(p17 .- '>pn—17pn)7

Fe(Tp1,---, TPn-1) = Fe(P1,---,Pn-1)
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Some examples in the two-dimensional space-time

In the sequel, we set v = 2 and consider Feynman integrals and
Feynman phase space integrals associated with some simple Feynman

diagrams.
In general, for a two-dimensional vector p = (po, p1), we denote
2 = p? — p? for the Lorentz norm and dp = dpodp; for the volume

element.
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Example 1
Let us study the Feynman diagram G below:

Ky
P1 P2

ko

Then the Feynman integral is written in the form

FG(plv P2) = / 5(p1 — ki — k2)5(—P2 +k; + kz)
R4

< (06— VTI0) (G — g+ v/710) sk,
= 6(p1 — p2)Fe(p1)

with the amplitude
Fe(p) = / (k3 — m2 +v/—=10)"'((p1 — k1)* — m3 + v/—10) " dk;.
R2
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The amplitude F¢(p;) is well-defined as a microfunction on
V/—1T*R?\ R?, i.e., the whole cotangent bundle with the zero
section removed. In other words, Fg(p1) is well-defined as a section
of the sheaf B>/ Ag2> on R2,
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Fs(p1) satisfies a holonomic system M = D, /I with the left ideal /
generated by three operators

pllaplo + ploapnv
(P10 — My — my)(p1o — My + my)(pro + My — m2)(pio + M1 + My)0p,,
+ P11P10(2P%o - P%l - 2”7% - 2"73)6;:11

+2p3 + (—2p3; — 2mi — 2m3) pro,

(Pfo - Pfl — (my + m2)2)(P%0 - P%l —(m — m2)2)aP11
— 2puipio + 23y + (2mi + 2m3) pus.
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The characteristic variety of M is

Char(M) = {(p1o0, p11; V—1(u10dp1o + t11dp11) | tp = uy1 = 0}
U {pio — P31 — (m1 + my)? = ui1pio + topi1 = 0}
U{pio — P21 — (m1 — my)? = u11p1o + trop1n = 0}

with each component of multiplicity one if m; # m, and

Char(M) = {(p1o; p11; \/—_1(U10dP10 + u11dpi1) | o = g1 = 0}
U {piy — P — 4m? = uy1pio + trop11 = 0}
U {p1o — p11 = tho + vy =0}
U {p1o + p11 = u10 — vy = 0}
U {p1o = p11 = 0}

with each component of multiplicity one if m; = my, = m.
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In view of the invariance under Lorentz transformations, let us set
p: = (x,0) with x # 0. Then Fg(x,0) satisfies

{(x = my — my)(x — my + mp)(x + my — my)(x + my + my)0x
+ 2x(x? — m? — m3)}Fg(x,0) = 0.

Hence the support of Fg(x,0) is contained in the set
{(x; V—=1udx) | x = £(my + my), £(my — my)}

and one has, for example

Fo((x,0)) = C(x — my 4 my) Y2 (x 4+ my — my)~Y/?
X (x + my + my) V2 (x — my — my ++/—10)71/2

at (my + my; /—1dx) as a microfunction if m; # my.
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If my = mp = m, then the support of Fg((x,0)) is contained in
{x =0,£2m} and one has

Fo((x,0)) = CxY(x +2m) Y?(x — 2m + +/—10) "1/

at (2m, v/—1dx).

I((x, 0)) satisfies the same differential equation as F¢((x, 0)).
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Example 2

The Feynman integral associated with the graph G below

ky
Bk N P
is given by \k;/
Fo(p1,p2) = 6(p1 — p2)Fo(p1)
with

Felpn) = [ (k= m? + V=10 (6 — m + v/=10)

x ((p1 — k1 — ko)? — m3 4+ v/—10) 7! dk; dk,.
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We can confirm that Fg(p;) is well-defined as a microfunction on
vV —1T*R?\ R? and its support (singular spectrum) is contained in

{po — P11 — (—m1 + my + m3)* = u11p1o + troprr = 0}
U{pi — P51 — (M — my + m3)* = u1pio + urop11 = 0}
U{pio — P51 — (M1 + my — m3)* = w1pio + urop11 = 0}
U{pio — P51 — (M1 + my + m3)® = w1pro + urop1 = 0}

N

for generic my, mp, ms.

We compute holonomic systems for Fg((x,0)) by assigning some
special values to my, my, m3 since the computation for general
my, my, m3 (as parameters) is intractable.
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First let us set my =1, my = 2, m3 = 4 so that (—m + my + ms)?,
(my — my + m3)?, (my + my — m3)? are distinct. Then Fg((x,0)) is
annihilated by the differential operator

30x(x — 1)(x + 1)(x = 3)(x + 3)(x = 5)(x +5)(x = 7)(x + 7)8_;3'
+ (—2x'? 4 191x* — 5340x® + 35954x° + 273082x*
— 2071305 4 661500)92
+ (—10x™ + 675x° — 12108x” 4 15454x° + 936462x>
— 2692665x)0x
— 8x™ + 372x® — 3300x° — 36028x" + 457932x* — 356760.

The singular points x = 0,41, 43, +5, £7 are all regular and the
indicial equations are all s?(s — 1). This implies

Fo((x,0)) = Ulog(x + i0) e.g., at (1,/—1dx) with a
microdifferential operator of order zero.
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Next set my = mp = m3 = 1. Then F¢((x,0)) is annihilated by
x(x = 1)(x + 1)(x — 3)(x + 3)92 + (5x* — 30x* + 9)0, + 4x> — 12x.

The points 0, +1, £3 are regular singular and the indicial equations
at these points are all s2.

This implies Fg((x,0)) = Ulog(x — 1+ i0) e.g., at (1,/—1dx) with
a microdifferential operator of order zero.

Is((x,0)) satisfies the same differential equation as F¢((x, 0)).
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Example 3
The Feynman integral associated with the graph G below

p1 ky P2

ks
k>

. Ps3
is given by

Fo(p1,P2,P3) = 6(p1 — P2 — P3)Fe(p1, P2)

with

Folpr.pe) = [ (= mi + v=T0) !
X ((p1 = k1)® = m3 +V=10)"") "} ((p2 — k1)? — m5 +v/=10) " dk.
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Computation for general my, m,, ms are beyond of my (computer's)
ability.

So let us set m; = my = m3 = 1 in the sequel.

In this situation, the Landau-Nakanishi variety was investigated by
N. Honda and T. Kawai in detail.
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The amplitude F¢((x,0), (v, z)) is well-defined on
{(x,y,z; V—1(udx + vdy + wdz) | (u, v, w) # (0,0,0)}
V(- yP -2 —d=we—wy t = ut v =0}
U{x—y=z=u+v=0}
U{y’ -z —4=wy —vz=u=0}
U{X2—4:V:W:0}U{X:V:W:0}>
as a microfunction and its support is contained in
V-IT g RPUV-IT o RPUV-IT] R
with
f=—2)(y+2)x* =20y = 2)(y + 2)yx + (y — 2)*(y + 2)* + 42°,

where we denote by T:R3 the closure of the conormal bundle of the
regular part of a real analytic set S of R3.
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We can compute a holonomic system M = Ds/1 for
Fs((x,0),(y,z)), which is too complicated to show here; we get 74
generators of the left ideal /. The characteristic variety of M is

CU T{-yCP U Ty C°

U Tiepr-22-4-0C U T 24T

UTy oy CU T,y CP

UT, e CCUT g CUT g CCUTE 5 CPUT], 5 C°
UT{ey2aeyCU T, 0y CUT Ly, C

UT{ ey CU T,y CP U T,y C,

where we denote by T3C3 the closure of the conormal bundle of the
regular part of an analytic set Z of C3.
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On the other hand, the amplitude /((x,0), (y, z)) of the Feynman
phase space integral satisfies a holonomic system M’ = D3/I’, which
is strictly stronger than M, i.e, | & I’. The characteristic variety of
M’ is
* 3 * 3 * 3
* 3 * 3 * 3
U T{X:y—ZZO}C U T{X:y+Z:0}C U T{X:y:ZZO}C 3

which is much smaller than that of M. In particular, the support of
M’ as D-module is contained in the hypersurface f = 0.
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Singularities of the surface f =0
Let us investigate the singularities of the complex surface
Z={(x.y,2) eC’| f(x,y,2) = O},
f=—2)y+2)x° =20y — 2)(y + 2)yx + (y — 2)*(y + 2)* +42".
Following N. Honda and T. Kawai, we rewrite f as

f=yzx* —yz(y + 2)x + y*22 + (y — 2)?

by change of coordinates (y + z,y — z) — (y, 2).

Then the singular locus of Z is the union of two complex lines
{x=y=12z}and {y =z =0}

The projection Z 3 (x,y, z) — (y, z) defines a doube covering on
{(x,y) | xy # 0} branched along the union of curves y —z =0 and
yz—4=0.

Toshinori Oaku Department of Mathematics,An attempt to compute holonomic systems fc October 20, 2017 37/ 46



The stratification of Z with respect to the (local) b-function by ,(s)
of f at a point p is

’ strata ‘ br p(5) ‘
{(0,0,0)} (s+1)32s+3)
{(2,0,0),(—2,0,0),(2,2,2),(—2,—-2,-2)} | (s + 1)2(25 +3)
{x=y=z}U{y=2z=0} (s +1)?

\{(0,0,0),(£2,0,0),£(2,2,2)}
{f=00\({x=y=2ztu{y=2=0}) s+1

In comparison, that of g := x> — y?z (Whitney umbrella) is
| strata | bgo(s) |
{(0,0,0)} (s +1)*(2s+3)
{x=y=0}\{(0,0,0)} | (s +1)

{g=0\{x=y=0} [s+1
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Cross section of F¢

In order to guess the multiplicity and the exponent (order) of Fe
along the conormal bundle of f = 0 at a non-singular point, we
compute the restriction of the holonomic system M to a generic line.
For example, we can take L = {(x,y,z) |y =1,z =2}. The
restriction of f to L is —3x? + 6x + 25 = —(3x®> — 6x — 25), which
have two real roots o and 2 — . Then F(x) := Fg((x,0),(1,2)) is
annihilated by a 5th order differential operator

P = 147316552073926635122538062595769976812320x(x — 3)
x (x — 2)(x + 1)(x +2)(x* — 2x — 7)(3x* — 6x — 25)92
+ (2871432833964372040345167998282243508711x%9 + - - - )d*
The indicial polynomial at a is s(s — 1)(s — 2)(s — 3)(s + 1). Hence
Fo((x,0),(1,2)) = U(x — a ++/—10)*

at (a, v/—1dx) with a microdifferential operator U of order 0.
Ty



Landau-Nakanishi surface for general my, my, ms
Fs((x,0),(y,z)) is well-defined on

{(x,y,z; V—1(udx + vdy + wdz) | (u,v,w) # (0,0,0)}
\({(X—y)2—22—(m2—m3)2:WX—Wy+VZ:U—|—V:0}
{x—y)P =22~ (m+m)?=wx —wy +vz=u+v=0}

U{y* =22 —(m — ms)®>=wy — vz=u =0}
U{y’ =22 —(m +ms)*=wy — vz=u =0}
U{x+m+m=v=w=0}

U{x+m —my=v=w=0}
U{x—m+my=v=w=0}
U{x—m—-—m=v=w=0}U{x=v=w=0}

as a microfunction
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and the projection of its (micro-)support to the base space R3 is

contained in the (Landau-Nakanishi) surface f(x,y, z) = 0 with

f=(y? — Z2)x* + (=2y* + (22% — 2m? 4+ 2m3)y)x°
+ (y* + (22 +4m? —2m? —2m3)y? + Z*
+(2m3 +2m3)z* + m — 2m3mi + mj3)x?
+ ((—2m3 +2md)y> + ((2m2 — 2m3)z* — 2m}
+(2m3 +2m3)mi — 2m3m3)y)x

+ (m} = 2m3m; + m3)y® + (—mi + 2msmi — m3)z°.
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By the coordinate transformation (y + z,y — z) — (y, z), f becomes

f=zyx* — (y+2)(zy + m{ — m5)x*

+{(2* + mi)y® +2(mi — m3 — m3)zy + miz* + (my — m3)*}x2
— (m1— mo)(my + ma)(y + 2)(2y + mi — m3)x
+ (my — mp)?(my + my)zy.

The singular locus of f = 0 is given by

{(f=f=f=F=0}

={y —z=—2¢+ (22 + m{ — my)x + (—mi + m3)z = 0}
U{x:ml—m2:O}U{x:m1+m2:O}
U{x*+ (—y — z)xm} —m3 = zy — m2 = m3 = 0}
U{(z+m)y +mz+m—m;=x+m =m, =0}
U{(z—m)y —mz+mi —mj=x—m =m,=0}

UWzy —m3=x+m=m =0yU{zy —m5 =x—my=m =0}.
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For example, if m; =1, my = 2, m3 = 3 (probably generic case),
then the local b-function b ,(s) of f at p = (x, y, z) defined by the
equations

y—z=27z"-202"+64=8x>— (2 -~ 122)x — 24 =0

is (s + 1)?(2s + 3), which is the same as that of the Whitney
umbrella. There are 8 such points p, which are all in R3.
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If my =2, my = m3 =1, then the local b-function by ,(s) of f at
p=+(v3,v3,v3) is (s + 1)3(2s + 3). This implies that the
singularity at p of f is not analytically equivalent to the Whitney

umbrella.
The projection to the xy-space of the singular locus of f =0 is as

below:
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If my =1, my = m3 = 2, then the local b-function b ,(s) of f at

p=+(vV/-3,v=3,vV/-3)is (s + 1)3(2s + 3).
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