Some algorithmic problems for holonomic distributions

Toshinori Oaku

Tokyo Woman's Christian University

RIMS, Kyoto University, October 8, 2015

Part I Theoretical background

Product of complex power and a locally integrable function

Let $\mathcal{D}_{\mathbb{C}^n}$ be the sheaf on \mathbb{C}^n of linear partial differential operators with holomorphic coefficients and let $\mathcal{D}_{\mathbb{R}^n}:=\mathcal{D}_{\mathbb{C}^n}|_{\mathbb{R}^n}$ be its sheaf theoretic restriction to \mathbb{R}^n . We denote by $\mathcal{D}b$ the sheaf on \mathbb{R}^n of the Schwartz distributions. Assume

- f is a nonzero real-valued real analytic function defined on an open connected set U of \mathbb{R}^n .
- $\varphi \in L^1_{loc}(U)$.

Then $f_+^{\lambda}\varphi$ belongs to $L^1_{loc}(U)$ for $\lambda\in\mathbb{C}$ with $\mathrm{Re}\ \lambda\geq 0$, where $f_+(x)=\max\{f(x),0\}$.

Holonomic distributions

Let $\mathcal M$ be a coherent left $\mathcal D_{\mathbb C^n}$ -module defined on an open set Ω of $\mathbb C^n$. We say that a distribution φ on an open set $U\subset\Omega\cap\mathbb R^n$ is a solution of $\mathcal M$ on U if there exist a section u of $\mathcal M$ and a $\mathcal D_{\mathbb C^n}$ -linear homomorphism $\Phi:\mathcal D_{\mathbb C^n}u\to\mathcal Db$ defined on U such that $\Phi(u)=\varphi$. If $\mathcal M$ is holonomic, then we call φ a (analytically) holonomic distribution.

Let D_n be the ring of differential operators with polynomial coefficients. Then a left $\mathcal{D}_{\mathbb{C}^n}$ -module \mathcal{M} is called algebraic if there exists a finitely generated left D_n -module M such that $\mathcal{M} = \mathcal{D}_{\mathbb{C}^n} \otimes_{D_n} M$.

Our aim is to consider $f_+^{\lambda}\varphi$ for a holonomic and locally integrable function φ from theoretical as well as algorithmic viewpoints.

References

- Kashiwara, M, On the holonomic systems of linear differential equations, II, Inventiones mathematicae 49 (1978), 121-135.
 generalized b-function, tensor product of holonomic systems
- Kashiwara, M., Kawai, T., On the characteristic variety of a holonomic system with regular singularities, Advances in Mathematics 34 (1979), 163–184. complex power times a locally integrable function
- Galina, E., Laurent, Y., D-modules and characters of semisimple Lie groups, Duke Mathematical Journal 123 (2004), 265–309.
 local integrability of a distribution solution of a holonomic system

Fundamental lemma

 $f_+^\lambda \varphi$ is a $\mathcal{D}b(\mathit{U})\text{-valued}$ holomorphic function of λ on the right half plane

$$\mathbb{C}_+ := \{ \lambda \in \mathbb{C} \mid \operatorname{Re} \lambda > 0 \}.$$

Let s be an indeterminate corresponding to λ . Let Ω be an open set of \mathbb{C}^n such that $U \subset \Omega$.

Lemma (Kashiwara-Kawai (1979))

Assume $P(s) \in \mathcal{D}_{\mathbb{C}^n}(\Omega)[s]$ and $P(\lambda)(f_+^{\lambda}\varphi) = 0$ holds as distribution on $U_f := \{x \in U \mid f(x) \neq 0\}$ for any $\lambda \in \mathbb{C}_+$. Then $P(\lambda)(f_+^{\lambda}\varphi) = 0$ holds on U for any $\lambda \in \mathbb{C}_+$.

Holonomicity of $f_+^{\lambda}\varphi$

Theorem 1 (Kashiwara-Kawai (1979))

Assume that there exists a holonomic $\mathcal{D}_{\mathbb{C}^n}$ -module $\mathcal{M}=\mathcal{D}_{\mathbb{C}^n}u$ defined on an open set Ω of \mathbb{C}^n with $\Omega\supset U$ such that $\varphi\in L^1_{\mathrm{loc}}(U)$ is a solution of \mathcal{M} on U_f . Then there exists a coherent $\mathcal{D}_{\mathbb{C}^n}[s]$ -module \mathcal{M}' such that $\mathcal{M}'_\lambda:=\mathcal{M}'/(s-\lambda)\mathcal{M}'$ is a holonomic $\mathcal{D}_{\mathbb{C}^n}$ -module for any $\lambda\in\mathbb{C}$ and that $f_+^\lambda\varphi$ is a solution of \mathcal{M}'_λ for any $\lambda\in\mathbb{C}_+$

In fact, in the referenced paper, the authors assume that \mathcal{M} has regular singularities on $T^*_{f^{-1}(0)}\Omega$ and that the characteristic variety of \mathcal{M} is contained in $T^*_{\Omega}\Omega \cup \pi^{-1}(f^{-1}(0))$, and prove that \mathcal{M}'_{λ} is regular holonomic and that the characteristic variety of \mathcal{M}'_{λ} is contained in ' W_0 '.

Sketch of the proof of Theorem 1

Let $\mathcal{L}=\mathcal{O}_{\mathbb{C}^n}[f^{-1},s]f^s$ where f^s is regarded as a free generator. Then \mathcal{L} has a natural structure of left $\mathcal{D}_{\mathbb{C}^n}[s]$ -module.

Set

$$\mathcal{N}:=\mathcal{D}_{\mathbb{C}^n}[s]f^s\subset\mathcal{L},\qquad \mathcal{M}':=\mathcal{N}\otimes_{\mathcal{O}_{\mathbb{C}^n}}\mathcal{M}.$$

 \mathcal{M}' is a coherent $\mathcal{D}_{\mathbb{C}^n}[s]$ -module. $\mathcal{N}_{\lambda}:=\mathcal{N}/(s-\lambda)\mathcal{N}$ is a holonomic $\mathcal{D}_{\mathbb{C}^n}$ -module for any $\lambda\in\mathbb{C}$. Hence

 $\mathcal{M}'_{\lambda} := \mathcal{M}'/(s-\lambda)\mathcal{M}' = \mathcal{N}_{\lambda} \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M}$ is holonomic for any $\lambda \in \mathbb{C}$ as the tensor product of holonomic $\mathcal{D}_{\mathbb{C}^n}$ -modules (Kashiwara (1978)).

Let f^{λ} be the residue class of f^{s} in \mathcal{N}_{λ} . If $\operatorname{Re} \lambda > 0$, then the \mathbb{C} -bilinear sheaf homomorphism

$$\mathcal{N}_{\lambda} \times \mathcal{M} \ni (Pf^{\lambda}, Qu) \longmapsto (Pf^{\lambda}_{+})Q\varphi \in \mathcal{D}b,$$

which is well-defined and $\mathcal{O}_{\mathbb{C}^n}$ -balanced on U_f since f_+^{λ} is real analytic there, induces a homomorphism

$$\Phi: \mathcal{N}_{\lambda} \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M} \longrightarrow \mathcal{D}b$$

such that $\Phi((Pf^{\lambda}) \otimes Qu) = (Pf_{+}^{\lambda})Q\varphi$ on U_f . Moreover Φ is $\mathcal{D}_{\mathbb{C}^n}$ -linear since

$$\begin{split} \partial_j (Pf^\lambda \otimes Qu) &= (\partial_j Pf^\lambda) \otimes Qu + Pf^\lambda \otimes (\partial_j Qu) \quad \text{in } \mathcal{N}_\lambda \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M}, \\ \partial_j (Pf_+^\lambda Q\varphi) &= (\partial_j Pf_+^\lambda) Q\varphi + Pf_+^\lambda \partial_j Q\varphi \quad \text{on } U_f. \end{split}$$

If $P \in \mathcal{D}_{\mathbb{C}^n}$ satisfies $P(f^{\lambda} \otimes u) = 0$ in $\mathcal{N}_{\lambda} \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M}$, then $P(f_{\perp}^{\lambda} \varphi) = 0$ holds on U_f . The fundamental lemma implies that $P(f_{\perp}^{\lambda}\varphi)=0$ holds on U.

It follows that there exists a $\mathcal{D}_{\mathbb{C}^n}$ -linear homomorphism

$$\mathcal{N}_{\lambda} \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M} \supset \mathcal{D}_{\mathbb{C}^n}(f^{\lambda} \otimes u) \stackrel{\Phi'}{\longrightarrow} \mathcal{D}b$$

such that $\Phi'(f^{\lambda} \otimes u) = f_{+}^{\lambda} \varphi$. Hence $f_{+}^{\lambda} \varphi$ is a solution of the holonomic system $\mathcal{D}_{\mathbb{C}^n}(f^{\lambda} \otimes u) \subset \mathcal{N}_{\lambda} \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M}$.

This completes the proof of Theorem 1.

RIMS, Kyoto University, October 8, 2015

Lemma

If $P(s) \in \mathcal{D}_{\mathbb{C}^n}[s]$ satisfies $P(f^s \otimes u) = 0$ in $\mathcal{L} \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M}$, then $P(\lambda)(f_+^{\lambda}\varphi) = 0$ holds in $\mathcal{D}b(U)$ for any $\lambda \in \mathbb{C}_+$.

Proof: The inclusion $\mathcal{D}_{\mathbb{C}^n}[s]f^s \subset \mathcal{L} = \mathcal{O}_{\mathbb{C}^n}[f^{-1},s]f^s$ induces a homomorphism

$$\iota: \mathcal{D}_{\mathbb{C}^n}[s]f^s \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M} \longrightarrow \mathcal{L} \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M}.$$

 ι is bijective on U_f since $\mathcal{D}_{\mathbb{C}^n}[s]f^s=\mathcal{L}$ there. Thus $P(s)(f^s\otimes u)=0$ in $\mathcal{L}\otimes_{\mathcal{O}_{\mathbb{C}^n}}\mathcal{M}$ implies $P(\lambda)(f_+^\lambda\varphi)=0$ on U_f and hence on U by the fundamental lemma.

Generalized b-function and analytic continuation

By Kashiwara (1978), on a neighborhood of each point of Ω , there exist nonzero $b(s) \in \mathbb{C}[s]$ and $P(s) \in \mathcal{D}_{\mathbb{C}^n}[s]$ such that

$$P(s)(f^{s+1} \otimes u) = b(s)f^s \otimes u \text{ in } \mathcal{L} \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M}.$$

Such b(s) of the smallest degree is called the (generalized) b-function for f and u.

By the above lemma,

$$P(\lambda)(f_+^{\lambda+1}\varphi) = b(\lambda)f_+^{\lambda}\varphi$$

holds for $\operatorname{Re} \lambda > 0$. It follows that $f_+^{\lambda} \varphi$ is a $\mathcal{D}b(U)$ -valued meromorphic function of $\lambda \in \mathbb{C}$ if U is relatively compact in Ω . In particular, $f_+^{\lambda} \varphi$ is holomorphic on a neighborhood of $\lambda = 0$.

Corollary 1

Let φ be a locally integrable function on an open set U of \mathbb{R}^n and f be a real-valued real analytic function on U. Assume that there exist a holonomic system $\mathcal{M}=\mathcal{D}_{\mathbb{C}^n}u$ on an open set Ω of \mathbb{C}^n with $U\subset\Omega$ such that φ is a solution of \mathcal{M} on U_f . Then there exist a holonomic system \mathcal{M}'_0 of which φ is a solution on U and a surjective $\mathcal{D}_{\mathbb{C}^n}$ -homomorphim $\Phi:\mathcal{M}'_0\longrightarrow\mathcal{M}$ which is an isomorphism on U_f .

Proof: Set $\mathcal{M}'_0 = \mathcal{N}_0 \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M}$ with $\mathcal{N}_0 = \mathcal{D}_{\mathbb{C}^n} f^0$. Then $\theta(f)\varphi = f_+^0 \varphi$ and $\theta(-f)\varphi$ are solutions of \mathcal{M}'_0 on U, where θ denotes the Heaviside function. Hence $\varphi = \theta(f)\varphi + \theta(-f)\varphi$ is also a solution of \mathcal{M}'_0 . The natural surjective homomorphism $\mathcal{D}_{\mathbb{C}^n} f^0 \to \mathcal{D}_{\mathbb{C}^n} 1 = \mathcal{O}_{\mathbb{C}^n}$, which is an isomorphism on U_f , induces Φ .

Corollary 2

Let φ_1 and φ_2 be locally L^p and L^q functions respectively on an open set $U\subset \mathbb{R}^n$ with $1\leq p,q\leq \infty$ and 1/p+1/q=1. Assume that φ_1 and φ_2 are solutions of holonomic $\mathcal{D}_{\mathbb{C}^n}$ -modules \mathcal{M}_1 and \mathcal{M}_2 respectively on U. Then the product $\varphi_1\varphi_2$ is a solution of a holonomic $\mathcal{D}_{\mathbb{C}^n}$ -module \mathcal{M} on U.

Proof: There exist holomorphic functions f_1 and f_2 such that the singular support (the projection of the characteristic variety minus the zero section) of \mathcal{M}_k is contained in $f_k=0$ for k=1,2. Set $f(z)=f_1(z)\overline{f_1(\overline{z})}f_2(z)\overline{f_2(\overline{z})}$. Then f(x) is a real-valued real analytic function and φ_1 and φ_2 are real analytic on U_f . $\varphi_1\varphi_2$ is a solution of $\mathcal{M}_1\otimes_{\mathcal{O}_{CR}}\mathcal{M}_2$ on U_f . So we can apply Corollary 1.

When is a holonomic distribution locally L^p ?

Let $\mathcal{M}=\mathcal{D}_{\mathbb{C}^n}u$ be a holonomic system on an open set Ω of \mathbb{C}^n and $p\geq 1$ be a real number. Assume that \mathcal{M} is p-tame; i.e., there exists a stratification $\Omega=\bigcup_{\alpha}X_{\alpha}$ such that $\operatorname{Char}(\mathcal{M})\subset\bigcup_{\alpha}T_{X_{\alpha}}^*\Omega$ and the real parts of the roots of the b-function of \mathcal{M} along each X_{α} are greater than $-\operatorname{codim}X_{\alpha}/p$.

Let the singular support $SS(\mathcal{M})$ of \mathcal{M} be $\{z \in \Omega \mid f(z) = 0\}$ with a holomorphic function f(z). Then we also assume that f(x) is real-valued for $x \in \Omega \cap \mathbb{R}^n$ and that at each point of $SS(\mathcal{M})$, there exists a locally analytic coordinate transformation Φ so that $f \circ \Phi$ is homogeneous.

Theorem (Galina-Laurent, 2004)

Under the above assumptions, if φ is a distribution solution of \mathcal{M} on $U := \Omega \cap \mathbb{R}^n$, then φ is locally L^p on U. If \mathcal{M} is regular holonomic, then φ may be a hyperfunction solution.

In fact, this theorem is stated and proved with a weaker assumption (conic *p*-tameness with respect to a vector field).

An example: Appell's F_1

Set

$$P_{1} := x(1-x)\partial_{x}^{2} + y(1-x)\partial_{x}\partial_{y} + \{\gamma - (\alpha + \beta + 1)x\}\partial_{x}$$

$$-\beta y\partial_{y} - \alpha\beta,$$

$$P_{2} := y(1-y)\partial_{y}^{2} + x(1-y)\partial_{x}\partial_{y} + \{\gamma - (\alpha + \beta' + 1)y\}\partial_{y}$$

$$-\beta'x\partial_{x} - \alpha\beta'$$

with $\alpha, \beta, \beta', \gamma \in \mathbb{C}$. Then $\mathcal{M} := \mathcal{D}_{\mathbb{C}^2}/(\mathcal{D}_{\mathbb{C}^2}P_1 + \mathcal{D}_{\mathbb{C}^2}P_2)$ is holonomic and its singular support is $\{(x,y) \in \mathbb{C}^2 \mid xy(x-1)(y-1)(x-y) = 0\}.$

The *b*-function of $\mathcal M$ along each stratum is as follows:

$$x = 0:$$
 $s(s - \beta' + \gamma - 1)$
 $x = 1:$ $s(s + \alpha + \beta - \gamma)$
 $y = 0:$ $s(s - \beta + \gamma - 1)$
 $y = 1:$ $s(s + \alpha + \beta' - \gamma)$
 $x - y = 0:$ $s(s + \beta + \beta' - 1)$
 $x = y = 0:$ $s(s + \beta + \beta' - 1)$
 $x = y = 0:$ $s(s - \beta + \gamma - 1)(s + \alpha + \beta - \gamma)$
 $x = y - 1 = 0:$ $s(s - \beta' + \gamma - 1)(s + \alpha + \beta' - \gamma)$
 $x - 1 = y - 1 = 0:$ $s(s + \alpha + \beta + \beta' - \gamma)$

Remark: We can confirm that these b-functions are regular; there is an algorithm to find (or prove that there is none) regular b-functions (O, J. Pure and Applied Algebra (2009)).

Hence every distribution solution of $\mathcal M$ is locally L^p if the real parts of

$$\beta' - \gamma + 1$$
, $-\alpha - \beta + \gamma$, $\beta - \gamma + 1$, $-\alpha - \beta' + \gamma$, $-\beta - \beta' + 1$

are greater than -1/p and the real part of $-\alpha - \beta - \beta' + \gamma$ is greater than -2/p.

(This condition is satisfied, e.g., if $\alpha=\beta=\beta'=\gamma=0$ for any p>1.)

Laurent coefficients of $f_{\perp}^{\lambda}\varphi$

Let f be a real-valued real analytic function on an open connected set U of \mathbb{R}^n and φ be a locally integrable function on U. Assume that φ is a solution (on U_f) of a holonomic $\mathcal{D}_{\mathbb{C}^n}$ -module $\mathcal{M} = \mathcal{D}_{\mathbb{C}^n} u$ defined on an open set Ω of \mathbb{C}^n such that U is relatively compact in Ω . Then $f_{\perp}^{\lambda}\varphi$ is a $\mathcal{D}b(U)$ -valued meromorphic function on \mathbb{C} .

Theorem 2

Under the above assumption, each coefficient of the Laurent expansion of $f_{+}^{\lambda}\varphi$ about an arbitrary $\lambda_{0}\in\mathbb{C}$ is (locally at each point of U) a solution of a holonomic $\mathcal{D}_{\mathbb{C}^n}$ -module.

Sketch of the proof of Theorem 2

Let λ_0 be a pole of order $l \geq 0$ of $f_+^\lambda \varphi$ and consider the Taylor expansion

$$(\lambda - \lambda_0)' f_+^{\lambda} \varphi = \sum_{k=0}^{\infty} (\lambda - \lambda_0)^k \varphi_k$$

with $\varphi_k \in \mathcal{D}b(U)$ given by

$$\varphi_{k} = \frac{1}{k!} \lim_{\lambda \to \lambda_{0}} \frac{\partial^{k}}{\partial \lambda^{k}} \{ (\lambda - \lambda_{0})^{l} f_{+}^{\lambda} \varphi \}$$

but $f_+^{\lambda_0} \varphi$ is not defined in general.

Fix $m \in \mathbb{N}$ such that $\operatorname{Re} \lambda_0 + m > 0$. By using the functional equation involving the generalized b-function, we can find, at each point of U, a nonzero $b(s) \in \mathbb{C}[s]$ and a germ P(s) of $\mathcal{D}_{\mathbb{C}^n}[s]$ such that

$$b(\lambda)f_+^{\lambda}\varphi = P(\lambda)(f_+^{\lambda+m}\varphi).$$

Hence there exist $Q_i \in \mathcal{D}_{\mathbb{C}^n}$ such that

$$\varphi_k = \sum_{j=0}^k Q_j(f_+^{\lambda_0 + m}(\log_+ f)^j \varphi)$$

where $\log_+ f = \log f$ if f > 0 and $\log_+ f = 0$ if f < 0.

We have only to show that $f_+^{\lambda_0+m}(\log_+ f)^j \varphi$ with $0 \le j \le k$ satisfy a holonomic system.

Consider the left $\mathcal{D}_{\mathbb{C}^n}[s]$ -module (direct sum of \mathbb{C} -vector spaces)

$$\mathcal{N}[k] := \mathcal{D}_{\mathbb{C}^n}[s]f^s \oplus \mathcal{D}_{\mathbb{C}^n}[s]f^s \log f \oplus \cdots \oplus \mathcal{D}_{\mathbb{C}^n}[s]f^s (\log f)^k,$$

where $\mathcal{D}_{\mathbb{C}^n}[s]$ acts on the 'symbol' $f^s(\log f)^j$ naturally. It is easy to see that $\mathcal{N}[k]/\mathcal{N}[k-1]$ is isomorphic to $\mathcal{N}=\mathcal{D}_{\mathbb{C}^n}[s]f^s$ as left $\mathcal{D}_{\mathbb{C}^n}[s]$ -module. Hence $\mathcal{N}[k]/(s-\lambda)\mathcal{N}[k]$ is a holonomic $\mathcal{D}_{\mathbb{C}^n}$ -module for any $\lambda \in \mathbb{C}$.

Now assume that $P_0(s)(f^s \otimes u) + \cdots + P_k(s)(f^s(\log f)^k \otimes u) = 0$ holds in $\mathcal{N}[k] \otimes_{\mathcal{O}_{\mathbb{C}^n}} \mathcal{M}$. Then it is easy to see that

$$\sum_{j=0}^{k} P_{j}(\lambda) \frac{\partial^{j}}{\partial \lambda^{j}} f_{+}^{\lambda} \varphi = \sum_{j=0}^{k} P_{j}(\lambda) f_{+}^{\lambda} (\log_{+} f)^{j} \varphi = 0$$

holds on U_f .

A generalization of the fundamental lemma implies that

$$\sum_{i=0}^{k} P_{j}(\lambda) f_{+}^{\lambda} (\log_{+} f)^{j} \varphi = 0$$

holds on *U*. This completes the proof of Theorem 2.

Difference equations for the integral of $f_+^{\lambda}\varphi$

Let $f \in \mathbb{R}[x]$ be a nonconstant real polynomial in $x = (x_1, \dots, x_n)$ and φ be a locally integrable function on an open set U of \mathbb{R}^n . Assume that φ is a solution on U_f of a holonomic D_n -module M.

Theorem 3

Under the above assumption, if $Z(\lambda) := \int_U f_+^{\lambda} \varphi \, dx$ is well-defined, e.g, if the support of φ is compact in U, or if φ is rapidly decreasing with $U = \mathbb{R}^n$, then $Z(\lambda)$ satisfies a linear difference equation with polynomial coefficients in λ .

Example:
$$\Gamma(\lambda+1) = \int_0^\infty x^\lambda e^{-x} dx = \int_{-\infty}^\infty x_+^\lambda e^{-x} dx$$
 satisfies $(E_\lambda - (\lambda+1))\Gamma(\lambda+1) = 0$, where $E_\lambda : \lambda \mapsto \lambda+1$ is the shift operator.

Part II Algorithms

Let $D_n = \mathbb{C}\langle x, \partial \rangle = \mathbb{C}\langle x_1, \dots, x_n, \partial_1, \dots, \partial_n \rangle$ be the ring of differential operators with polynomial coefficients with $\partial_j = \partial/\partial x_j$. In the sequel, let f be a non-constant real polynomial of $x = (x_1, \dots, x_n)$ and φ be a locally integrable function on an open connected set U of \mathbb{R}^n . We assume that φ is a solution of a holonomic D_n -module M on U_f .

Our main purpose is to present an glorithm to compute a holonomic system of which $f_+^\lambda \varphi$ is a solution. As we have seen in Part I, the tensor product $D_n[s]f^s \otimes_{\mathbb{C}[x]} M$, which can be computed as the restriction to the diagonal of the exterior tensor product, provides us with such a holonomic system. But the practical computation is hard in general. So we shall present an alternative method, which is much more efficient.

Algorithms for Theorems 2 and 3 are immediate applications of this algorithm.

Mellin transform

Let us assume that φ is real analytic on U_f and set

$$\tilde{\varphi}(x,\lambda) := \int_{-\infty}^{\infty} t_{+}^{\lambda} \delta(t-f(x)) \varphi(x) dt.$$

This is well-defined and coincides with $f_+^{\lambda}\varphi$ as a distribution on $U_f \times \mathbb{C}_+$. Then we have

$$\begin{split} &\int_{-\infty}^{\infty} t_{+}^{\lambda} t \delta(t - f(x)) \varphi(x) \, dt = \tilde{\varphi}(x, \lambda + 1), \\ &\int_{-\infty}^{\infty} t_{+}^{\lambda} \partial_{t} (\delta(t - f(x)) \varphi(x)) \, dt \\ &= -\int_{-\infty}^{\infty} \partial_{t} (t_{+}^{\lambda}) \delta(t - f(x))) f(x) \varphi(x) \, dt = -\lambda \tilde{\varphi}(x, \lambda - 1). \end{split}$$

Letting s be an indeterminate corresponding to λ , let us consider the ring $D_n\langle s, E_s\rangle$ of difference-differential operators with the shift operator $E_s: s\mapsto s+1$. In view of the preceding identities, let us define the ring homomorphism (Mellin transform of operators)

$$\mu: D_{n+1} \longrightarrow D_n\langle s, E_s, E_s^{-1}\rangle$$

by

$$\mu(t) = E_s, \quad \mu(\partial_t) = -sE_s^{-1}, \quad \mu(x_j) = x_j, \quad \mu(\partial_{x_j}) = \partial_{x_j}.$$

It is easy to see that μ is injective. Hence we may regard D_{n+1} as a subring of $D_n\langle s, E_s, E_s^{-1}\rangle$.

There are inclusions

$$D_n[s] \subset D_{n+1} \subset D_n\langle s, E_s, E_s^{-1} \rangle.$$

Let $\mathcal{F}(U)$ be the \mathbb{C} -vector space of the $\mathcal{D}b(U)$ -valued meromorphic functions on \mathbb{C} . Then $\mathcal{F}(U)$ has a natural strucure of left $D_n\langle s, E_s, E_s^{-1}\rangle$ -module, which is compatible with that of $D_n[s]$ -module. In particular, we can regard $\mathcal{F}(U)$ as a left D_{n+1} -module.

Remark: Since we shall use only μ , we can forget the definition of the Mellin transform $\tilde{\varphi}(t,\lambda)$ as a distribution.

A holonomic system for $f_+^{\lambda}\varphi$

Suppose $M = D_n/I$ with a left ideal I of D_n such that $P\varphi = 0$ on U_f for any $P \in I$. Let G be a finite set of generators of I.

Since $D_n\langle s, E_s, E_s^{-1}\rangle$ acts on $\mathbb{C}[x, s, f^{-1}]f^s$, we can regard $D_{n+1}f^s\subset \mathbb{C}[x, s, f^{-1}]f^s$ as a left D_{n+1} -module.

We may regard f^s as $\delta(t-f)$ in $D_{n+1}f^s$. In fact we have

$$\operatorname{Ann}_{D_{n+1}} f^{s} = D_{n+1}(t-f) + \sum_{j=1}^{n} D_{n+1} \left(\partial_{x_{j}} + \frac{\partial f}{\partial x_{j}} \partial_{t} \right).$$

Step 1: a holonomic difference-differential system for $f_+^{\lambda}\varphi$ Introducing a new variable t, set

$$\tau(P) := P\left(x, \partial_{x_1} + \frac{\partial f}{\partial x_1} \partial_t, \dots, \partial_{x_n} + \frac{\partial f}{\partial x_n} \partial_t\right)$$

for $P = P(x, \partial_{x_1}, \dots, \partial_{x_n}) \in G$. Set

$$\tilde{G} := \{ \tau(P) \mid P \in G \} \cup \{ t - f(x) \}$$

and let J be the left ideal of D_{n+1} generated by \tilde{G} . Then it is easy to see that D_{n+1}/J is holonomic.

Claim 1: $P(f_{+}^{\lambda}\varphi) = 0$ holds as an element of $\mathcal{F}(U)$ for any $P \in J$.

Proof: First note that

$$f_+^{\lambda}\partial_{x_j}\varphi = \left(\partial_{x_j} + \frac{\partial f}{\partial x_j}\partial_t\right)(f_+^{\lambda}\varphi)$$

holds on $U_f \times \{\lambda \in \mathbb{C} \mid \text{Re } \lambda > 1\}$ for any $P \in D_n$. Let $P \in G$. Then $P\varphi = 0$ holds on U_f . Hence

$$\tau(P)(f_+^{\lambda}\varphi)=f_+^{\lambda}P\varphi=0$$

holds on $U_f \times \{\lambda \in \mathbb{C} \mid \text{Re } \lambda > m\}$ with m being the order of P in ∂_t . Thus the fundamental lemma and the uniqueness of analytic continuation imply that $\tau(P)(f_+^{\lambda}\varphi) = 0$ holds in $\mathcal{F}(U)$.

Claim 2: Let u be the residue class of 1 in $M = D_n/I$. Then there exists an inclusion

$$D_{n+1}/J \subset D_{n+1}f^s \otimes_{\mathbb{C}[x]} M$$

such that 1 mod J corresponds to $f^s \otimes u$.

Proof: We have only to show that for $P \in D_{n+1}$,

$$P \in J \quad \Leftrightarrow \quad P(f^s \otimes u) = 0 \quad \text{in} \quad D_{n+1}f^s \otimes_{\mathbb{C}[x]} M.$$

The right implication follows from an argument similar to (and simpler than) the one for Claim 1.

Suppose $P(f^s \otimes u) = 0$ in $D_{n+1}f^s \otimes_{\mathbb{C}[x]} M$. We can rewrite P in the form

$$P = \sum_{\alpha \in \mathbb{N}^n, \nu \in \mathbb{N}} p_{\alpha,\nu}(x) \left(\partial_{x_1} + \frac{\partial f}{\partial x_1} \partial_t \right)^{\alpha_1} \cdots \left(\partial_{x_n} + \frac{\partial f}{\partial x_n} \partial_t \right)^{\alpha_n} \partial_t^{\nu} + Q \cdot (t - f(x))$$

with $p_{\alpha,\nu}(x)\in\mathbb{C}[x]$ and $Q\in D_{n+1}$. Setting $P_{\nu}:=\sum_{\alpha\in\mathbb{N}^n}p_{\alpha,\nu}(x)\partial_x^\alpha$, we get

$$0 = P(f^s \otimes u) = \sum_{t=0}^{\infty} (\partial_t^{\nu} f^s) \otimes P_{\nu} u \in D_{n+1} f^s \otimes_{\mathbb{C}[x]} M.$$

It follows that each P_{ν} belongs to I since $\{\partial_t^{\nu} f^s\}$ constitutes a free basis of $D_{n+1} f^s$ over $\mathbb{C}[x]$. Hence we have

$$P = \sum_{\nu=1}^{\infty} \partial_t^{\nu} \tau(P_{\nu}) + Q \cdot (t - f(x)) \in J.$$

Conclusion of Step 1: $f_+^{\lambda}\varphi$ is a solution of a holonomic

 D_{n+1} -module $D_{n+1}/J \subset D_{n+1}f^s \otimes_{\mathbb{C}[x]} M$ if λ is regarded as a variable s subject to shift operations.

Step 2: a holonomic system for $f_+^{\lambda} \varphi$ with a fixed λ .

We compute the annihilator $\operatorname{Ann}_{D_n[s]}(f^s\otimes u)=J\subset D_n[s]$. This is the intersection of the left ideal J and the subring $D_n[s]$ of D_{n+1} . This can be done as follows:

Introducing new variables σ and τ . For $P \in D_{n+1}$, let $h(P) \in D_{n+1}[\tau]$ be the homogenization of P with respect to the weights

Xj	∂_{x_j}	t	∂_t	$\overline{\tau}$
0	0	-1	1	-1

Let J' be the left ideal of $D_{n+1}[\sigma, \tau]$ generated by

$$\{h(P) \mid P \in \tilde{G}\} \cup \{1 - \sigma\tau\},\$$

where \tilde{G} is a set of generators of J.

Set $J''=J\cap D_{n+1}$. Since each element P of J'' is homogeneous w.r.t. the above weights, there exists $P'(s)\in D_n[s]$ such that $P=SP'(-\partial_t t)$ with $S=t^\nu$ or $S=\partial_t^\nu$ with some integer $\nu\geq 0$. We set $P'(s)=\psi(P)(s)$. Then $\{\psi(P)\mid P\in J''\}$ generates the left ideal $J\cap D_n[s]$ of $D_n[s]$. This procedure can be done by using a Gröbner basis in $D_{n+1}[\sigma,\tau]$.

Now we have a set of generators of

$$J\cap D_n[s]=\mathrm{Ann}_{D_n[s]}(f^s\otimes u)$$

with $f^s \otimes u \in D_{n+1}f^s \otimes_{\mathbb{C}[x]} M$.

Fix an arbitrary $\lambda \in \mathbb{C}$. Let f^{λ} be the residue class of f^{s} in $D_{n}f^{\lambda} := D_{n}[s]f^{s}/(s-\lambda)D_{n}[s]f^{s}$. Set $J_{0} := \{P(\lambda) \mid P(s) \in J \cap D_{n}[s]\}$. Then we have

$$D_n/J_0 \cong D_n(f^{\lambda} \otimes u) \subset (D_nf^{\lambda}) \otimes_{\mathbb{C}[x]} M,$$

i.e, $J_0 = \operatorname{Ann}_{D_n}(f^{\lambda} \otimes u)$.

Claim 1: If λ is not a pole of $f_+^{\lambda}\varphi$, then for any $P(s) \in J \cap D_n[s]$, $P(\lambda)(f_+^{\lambda}\varphi) = 0$ holds as a distribution on U.

Proof: Obvious from the arguments so far.

Claim 2: D_n/J_0 is holonomic.

Proof: Let us denote by $f^s \otimes' u$ the tensor product in $D_n[s] \otimes_{\mathbb{C}[x]} M$. The natural homomorphism $D_n[s] \otimes_{\mathbb{C}[x]} M \longrightarrow D_{n+1} \otimes_{\mathbb{C}[x]} M$ induces

$$\rho: D_n[s](f^s \otimes' u) \longrightarrow D_n[s](f^s \otimes u) \subset D_{n+1}(f^s \otimes u) = D_{n+1}/J.$$

Specializing s to λ , this induces a sujrective homomorphism

$$\rho': D_n(f^{\lambda} \otimes u) \longrightarrow D_n/J_0.$$

This proves that D_n/J_0 is holonomic since $D_n(f^{\lambda} \otimes u)$ is holonomic as a submodule of $D_nf^{\lambda} \otimes_{\mathbb{C}[x]} M$.

Remark: ρ and ρ' are not injective in general. For example, set $M = D_2/(D_2x_1 + D_2\partial_2)$ and $f = x_1x_2$. Then

$$\partial_2(f^s\otimes u)=\partial_2f^s\otimes u=-x_1\partial_tf^s\otimes u=-\partial_tf^s\otimes x_1u=0$$

holds in $D_{2+1} \otimes_{\mathbb{C}[x]} M$ but $\partial_2(f^s \otimes' u) \neq 0$ in $D_2[s]f^s \otimes_{\mathbb{C}[x]} M$.

Generalized *b*-functions

The inclusion $D_{n+1}f^s \subset \mathbb{C}[x,f^{-1},s]f^s$ induces a homomorphism

$$D_{n+1}f^s\otimes_{\mathbb{C}[x]}M\longrightarrow \mathbb{C}[x,f^{-1},s]f^s\otimes_{\mathbb{C}[x]}M.$$

We have computed $\operatorname{Ann}_{D_{n+1}}(f^s\otimes u)\cap D_n[s]$. Thus a generator b(s)of $\mathbb{C}[s] \cap (\operatorname{Ann}_{D_{n+1}}(f^s \otimes u) \cap D_n[s]) + D_n[s]f$ is a multiple of the b-function for f and $u \in M$. If $f: M \to M$ is injective, then b(s)coincides with the b-function because the above homomorphism is an isomorphism.

Difference equations for the integral

As we have seen $f_+^{\lambda}\varphi$ satisfies a holonomic D_{n+1} -module D_{n+1}/J . Hence if $Z(\lambda):=\int_{\mathbb{R}^n}f_+^{\lambda}\varphi\ dx$ is well-defined, e.g., if φ has compact support, or rapidly decreasing, then $Z(\lambda)$ is a solution of the holonomic D_1 -module

$$D_{n+1}/(J+\partial_{x_1}D_{n+1}+\cdots+\partial_{x_n}D_{n+1})$$

with $D_1 = \langle t, \partial_t \rangle$. Hence by inverse Mellin transform we obtain linear difference equations for $Z(\lambda)$.

Set $f=x^3-y^2\in\mathbb{R}[x,y]$. Since the *b*-function of f is $b_f(s)=(s+1)(6s+5)(6s+7)$, possible poles of f_+^λ are $-1-\nu$, $-5/6-\nu$, $-6/7-\nu$ and they are at most simple poles. The residue $\mathrm{Re} s_{\lambda=-1} f_+^\lambda$ is a solution of

$$D_2/(D_2(2x\partial_x + 3y\partial_y + 6) + D_2(2y\partial_x + 3x^2\partial_y) + D_2(x^3 - y^2)).$$

 $\mathrm{Res}_{\lambda=-5/6}f_+^{\lambda}$ is a solution of $D_2/(D_2x+D_2y)$. Hence it is a constant multiple of $\delta(x,y)$.

 $\mathrm{Res}_{\lambda=-7/6}f_+^{\lambda}$ is a solution of $D_2/(D_2x^2+D_2(x\partial_x+2)+D_2y)$. Hence it is a constant multiple of $\delta'(x)\delta(y)$.

Set
$$f = x^3 - y^2$$
. $\varphi(x, y) := \exp(-x^2 - y^2)$ is a solution of $M := D_2/(D_2(\partial_x + 2x) + D_2(\partial_y + 2y))$. The generalized *b*-function for f and $u := [1] \in M$ is $b_f(s) = (s+1)(6s+5)(6s+7)$.

$$Z(\lambda) := \int_{\mathbb{R}^2} f_+^{\lambda} \varphi \, dx dy$$
 is annihilated by the difference operator

$$32E_s^4 + 16(4s+13)E_s^3 - 4(s+3)(27s^2 + 154s + 211)E_s^2 - 6(s+2)(s+3)(36s^2 + 162s + 173)E_s - 3(s+1)(s+2)(s+3)(6s+5)(6s+13).$$

From this we see that -7/6 is not a pole of $Z(\lambda)$.

Set $\varphi(x)=\exp(-x-1/x)$ for x>0 and $\varphi(x)=0$ for $x\leq 0$. Then $\varphi(x)$ belongs to $\mathcal{S}(\mathbb{R})$ and satisfies a holonomic system

$$M := D_1/D_1(x^2\partial_x + x^2 - 1).$$

The generalized *b*-function for f = x and $u = [1] \in M$ is s + 1.

 $Z(\lambda) := \int_{\mathbb{T}} x_+^{\lambda} \varphi(x) dx$ is entire and satisfies a difference equation

$$(-E_{\lambda}^2 + (\lambda + 2)E_{\lambda} + 1)Z(\lambda) = 0.$$

This can also be deduced by integration by parts.

Set $\varphi_1(x)=\exp(-x-1/x)$ for x>0 and $\varphi_1(x)=0$ for $x\leq 0$. Set $\varphi(x,y)=\varphi_1(x)e^{-y}$. Then φ satisfies a holonomic system

$$D_2/(D_2(x^2\partial_x+x^2-1)+D_2(\partial_y+1)).$$

The generalized *b*-function for $f:=y^3-x^2$ and $u=[1]\in M$ is s+1. $Z(\lambda):=\int_{\mathbb{R}^2}f_+^\lambda\varphi(x)\,dxdy$ is well-defined since $f_+=0$ if y<0 and satisfies difference equations: ...

RIMS, Kyoto University, October 8, 2015