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Part I Theoretical background
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Product of complex power and a locally integrable

function

Let DCn be the sheaf on Cn of linear partial differential operators
with holomorphic coefficients and let DRn := DCn |Rn be its sheaf
theoretic restriction to Rn. We denote by Db the sheaf on Rn of the
Schwartz distributions. Assume

f is a nonzero real-valued real analytic function defined on an
open connected set U of Rn.

φ ∈ L1loc(U).

Then f λ+φ belongs to L1loc(U) for λ ∈ C with Re λ ≥ 0, where
f+(x) = max{f (x), 0}.
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Holonomic distributions

Let M be a coherent left DCn-module defined on an open set Ω of
Cn. We say that a distribution φ on an open set U ⊂ Ω ∩ Rn is a
solution of M on U if there exist a section u of M and a DCn-linear
homomorphism Φ : DCnu → Db defined on U such that Φ(u) = φ.
If M is holonomic, then we call φ a (analytically) holonomic
distribution.

Let Dn be the ring of differential operators with polynomial
coefficients. Then a left DCn-module M is called algebraic if there
exists a finitely generated left Dn-module M such that
M = DCn ⊗Dn M .

Our aim is to consider f λ+φ for a holonomic and locally integrable
function φ from theoretical as well as algorithmic viewpoints.
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Fundamental lemma

f λ+φ is a Db(U)-valued holomorphic function of λ on the right half
plane

C+ := {λ ∈ C | Re λ > 0}.

Let s be an indeterminate corresponding to λ. Let Ω be an open set
of Cn such that U ⊂ Ω.
.
Lemma (Kashiwara-Kawai (1979))
..

......

Assume P(s) ∈ DCn(Ω)[s] and P(λ)(f λ+φ) = 0 holds as distribution
on Uf := {x ∈ U | f (x) ̸= 0} for any λ ∈ C+. Then P(λ)(f λ+φ) = 0
holds on U for any λ ∈ C+.
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Holonomicity of f λ+φ

.
Theorem 1 (Kashiwara-Kawai (1979))
..

......

Assume that there exists a holonomic DCn-module M = DCnu
defined on an open set Ω of Cn with Ω ⊃ U such that φ ∈ L1loc(U) is
a solution of M on Uf . Then there exists a coherent DCn [s]-module
M′ such that M′

λ := M′/(s − λ)M′ is a holonomic DCn-module for
any λ ∈ C and that f λ+φ is a solution of M′

λ for any λ ∈ C+

In fact, in the referenced paper, the authors assume that M has
regular singularities on T ∗

f −1(0)Ω and that the characteristic variety of

M is contained in T ∗
ΩΩ ∪ π−1(f −1(0)), and prove that M′

λ is regular
holonomic and that the characteristic variety of M′

λ is contained in
‘W0’.
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Sketch of the proof of Theorem 1

Let L = OCn [f −1, s]f s where f s is regarded as a free generator. Then
L has a natural structure of left DCn [s]-module.

Set
N := DCn [s]f s ⊂ L, M′ := N ⊗OCn M.

M′ is a coherent DCn [s]-module. Nλ := N /(s − λ)N is a holonomic
DCn-module for any λ ∈ C. Hence
M′

λ := M′/(s − λ)M′ = Nλ ⊗OCn M is holonomic for any λ ∈ C as
the tensor product of holonomic DCn-modules (Kashiwara (1978)).
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Let f λ be the residue class of f s in Nλ. If Re λ > 0, then the
C-bilinear sheaf homomorphism

Nλ ×M ∋ (Pf λ,Qu) 7−→ (Pf λ+ )Qφ ∈ Db,

which is well-defined and OCn-balanced on Uf since f λ+ is real analytic
there, induces a homomorphism

Φ : Nλ ⊗OCn M −→ Db

such that Φ((Pf λ)⊗ Qu) = (Pf λ+ )Qφ on Uf . Moreover Φ is
DCn-linear since

∂j(Pf
λ ⊗ Qu) = (∂jPf

λ)⊗ Qu + Pf λ ⊗ (∂jQu) in Nλ ⊗OCn M,

∂j(Pf
λ
+Qφ) = (∂jPf

λ
+ )Qφ+ Pf λ+∂jQφ on Uf .
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If P ∈ DCn satisfies P(f λ ⊗ u) = 0 in Nλ ⊗OCn M, then P(f λ+φ) = 0
holds on Uf . The fundamental lemma implies that P(f λ+φ) = 0 holds
on U .
It follows that there exists a DCn-linear homomorphism

Nλ ⊗OCn M ⊃ DCn(f λ ⊗ u)
Φ′
−→ Db

such that Φ′(f λ ⊗ u) = f λ+φ. Hence f λ+φ is a solution of the
holonomic system DCn(f λ ⊗ u) ⊂ Nλ ⊗OCn M.
This completes the proof of Theorem 1.
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.
Lemma
..

......

If P(s) ∈ DCn [s] satisfies P(f s ⊗ u) = 0 in L ⊗OCn M, then
P(λ)(f λ+φ) = 0 holds in Db(U) for any λ ∈ C+.

Proof: The inclusion DCn [s]f s ⊂ L = OCn [f −1, s]f s induces a
homomorphism

ι : DCn [s]f s ⊗OCn M −→ L⊗OCn M.

ι is bijective on Uf since DCn [s]f s = L there. Thus P(s)(f s ⊗ u) = 0
in L ⊗OCn M implies P(λ)(f λ+φ) = 0 on Uf and hence on U by the
fundamental lemma.
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Generalized b-function and analytic continuation

By Kashiwara (1978), on a neighborhood of each point of Ω, there
exist nonzero b(s) ∈ C[s] and P(s) ∈ DCn [s] such that

P(s)(f s+1 ⊗ u) = b(s)f s ⊗ u in L ⊗OCn M.

Such b(s) of the smallest degree is called the (generalized) b-function
for f and u.

By the above lemma,

P(λ)(f λ+1
+ φ) = b(λ)f λ+φ

holds for Re λ > 0. It follows that f λ+φ is a Db(U)-valued
meromorphic function of λ ∈ C if U is relatively compact in Ω. In
particular, f λ+φ is holomorphic on a neighborhood of λ = 0.
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.
Corollary 1
..

......

Let φ be a locally integrable function on an open set U of Rn and f
be a real-valued real analytic function on U . Assume that there exist
a holonomic system M = DCnu on an open set Ω of Cn with U ⊂ Ω
such that φ is a solution of M on Uf . Then there exist a holonomic
system M′

0 of which φ is a solution on U and a surjective
DCn-homomorphim Φ : M′

0 −→ M which is an isomorphism on Uf .

Proof: Set M′
0 = N0 ⊗OCn M with N0 = DCn f 0. Then θ(f )φ = f 0+φ

and θ(−f )φ are solutions of M′
0 on U , where θ denotes the

Heaviside function. Hence φ = θ(f )φ+ θ(−f )φ is also a solution of
M′

0. The natural surjective homomorphism DCn f 0 → DCn1 = OCn ,
which is an isomorphism on Uf , induces Φ.
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.
Corollary 2
..

......

Let φ1 and φ2 be locally Lp and Lq functions respectively on an open
set U ⊂ Rn with 1 ≤ p, q ≤ ∞ and 1/p + 1/q = 1. Assume that φ1

and φ2 are solutions of holonomic DCn-modules M1 and M2

respectively on U . Then the product φ1φ2 is a solution of a
holonomic DCn-module M on U .

Proof: There exist holomorphic functions f1 and f2 such that the
singular support (the projection of the characteristic variety minus the
zero section) of Mk is contained in fk = 0 for k = 1, 2. Set
f (z) = f1(z)f1(z)f2(z)f2(z). Then f (x) is a real-valued real analytic
function and φ1 and φ2 are real analytic on Uf . φ1φ2 is a solution of
M1 ⊗OCn M2 on Uf . So we can apply Corollary 1.
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When is a holonomic distribution locally Lp?

Let M = DCnu be a holonomic system on an open set Ω of Cn and
p ≥ 1 be a real number. Assume that M is p-tame; i.e., there exists
a stratification Ω =

∪
α Xα such that Char(M) ⊂

∪
α T

∗
Xα
Ω and the

real parts of the roots of the b-function of M along each Xα are
greater than −codimXα/p.
Let the singular support SS(M) of M be {z ∈ Ω | f (z) = 0} with a
holomorphic function f (z). Then we also assume that f (x) is
real-valued for x ∈ Ω ∩ Rn and that at each point of SS(M), there
exists a locally analytic coordinate transformation Φ so that f ◦ Φ is
homogeneous.
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.
Theorem (Galina-Laurent, 2004)
..

......

Under the above assumptions, if φ is a distribution solution of M on
U := Ω ∩ Rn, then φ is locally Lp on U . If M is regular holonomic,
then φ may be a hyperfunction solution.

In fact, this theorem is stated and proved with a weaker assumption
(conic p-tameness with respect to a vector field).
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An example: Appell’s F1
Set

P1 := x(1− x)∂2x + y(1− x)∂x∂y + {γ − (α + β + 1)x}∂x
− βy∂y − αβ,

P2 := y(1− y)∂2y + x(1− y)∂x∂y + {γ − (α + β′ + 1)y}∂y
− β′x∂x − αβ′

with α, β, β′, γ ∈ C. Then M := DC2/(DC2P1 +DC2P2) is
holonomic and its singular support is
{(x , y) ∈ C2 | xy(x − 1)(y − 1)(x − y) = 0}.

x

y
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The b-function of M along each stratum is as follows:

x = 0 : s(s − β′ + γ − 1)
x = 1 : s(s + α + β − γ)
y = 0 : s(s − β + γ − 1)
y = 1 : s(s + α + β′ − γ)
x − y = 0 : s(s + β + β′ − 1)

x = y = 0 : s(s + γ − 1)
x − 1 = y = 0 : s(s − β + γ − 1)(s + α + β − γ)
x = y − 1 = 0 : s(s − β′ + γ − 1)(s + α + β′ − γ)
x − 1 = y − 1 = 0 : s(s + α + β + β′ − γ)

Remark: We can confirm that these b-functions are regular; there is
an algorithm to find (or prove that there is none) regular b-functions
(O, J. Pure and Applied Algebra (2009)).
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Hence every distribution solution of M is locally Lp if the real parts of

β′ − γ + 1, −α− β + γ, β − γ + 1, −α− β′ + γ, −β − β′ + 1

are greater than −1/p and the real part of −α− β − β′ + γ is
greater than −2/p.
(This condition is satisfied, e.g., if α = β = β′ = γ = 0 for any
p ≥ 1. )
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Laurent coefficients of f λ+φ

Let f be a real-valued real analytic function on an open connected
set U of Rn and φ be a locally integrable function on U . Assume
that φ is a solution (on Uf ) of a holonomic DCn-module M = DCnu
defined on an open set Ω of Cn such that U is relatively compact in
Ω. Then f λ+φ is a Db(U)-valued meromorphic function on C.
.
Theorem 2
..

......

Under the above assumption, each coefficient of the Laurent
expansion of f λ+φ about an arbitrary λ0 ∈ C is (locally at each point
of U) a solution of a holonomic DCn-module.
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Sketch of the proof of Theorem 2

Let λ0 be a pole of order l ≥ 0 of f λ+φ and consider the Taylor
expansion

(λ− λ0)
l f λ+φ =

∞∑
k=0

(λ− λ0)
kφk

with φk ∈ Db(U) given by

φk =
1

k!
lim
λ→λ0

∂k

∂λk
{(λ− λ0)

l f λ+φ}

but f λ0
+ φ is not defined in general.
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Fix m ∈ N such that Re λ0 +m > 0. By using the functional
equation involving the generalized b-function, we can find, at each
point of U , a nonzero b(s) ∈ C[s] and a germ P(s) of DCn [s] such
that

b(λ)f λ+φ = P(λ)(f λ+m
+ φ).

Hence there exist Qj ∈ DCn such that

φk =
k∑

j=0

Qj(f
λ0+m
+ (log+ f )jφ)

where log+ f = log f if f > 0 and log+ f = 0 if f ≤ 0.
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We have only to show that f λ0+m
+ (log+ f )jφ with 0 ≤ j ≤ k satisfy a

holonomic system.

Consider the left DCn [s]-module (direct sum of C-vector spaces)

N [k] := DCn [s]f s ⊕DCn [s]f s log f ⊕ · · · ⊕ DCn [s]f s(log f )k ,

where DCn [s] acts on the ‘symbol’ f s(log f )j naturally. It is easy to
see that N [k]/N [k − 1] is isomorphic to N = DCn [s]f s as left
DCn [s]-module. Hence N [k]/(s − λ)N [k] is a holonomic DCn-module
for any λ ∈ C.
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Now assume that P0(s)(f
s ⊗ u) + · · ·+ Pk(s)(f

s(log f )k ⊗ u) = 0
holds in N [k]⊗OCn M. Then it is easy to see that

k∑
j=0

Pj(λ)
∂j

∂λj
f λ+φ =

k∑
j=0

Pj(λ)f
λ
+ (log+ f )jφ = 0

holds on Uf .

A generalization of the fundamental lemma implies that

k∑
j=0

Pj(λ)f
λ
+ (log+ f )jφ = 0

holds on U . This completes the proof of Theorem 2.
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Difference equations for the integral of f λ+φ

Let f ∈ R[x ] be a nonconstant real polynomial in x = (x1, . . . , xn)
and φ be a locally integrable function on an open set U of Rn.
Assume that φ is a solution on Uf of a holonomic Dn-module M .
.
Theorem 3
..

......

Under the above assumption, if Z (λ) :=

∫
U

f λ+φ dx is well-defined,

e.g, if the support of φ is compact in U , or if φ is rapidly decreasing
with U = Rn, then Z (λ) satisfies a linear difference equation with
polynomial coefficients in λ.

Example: Γ(λ+ 1) =

∫ ∞

0

xλe−x dx =

∫ ∞

−∞
xλ+e

−x dx satisfies

(Eλ − (λ+ 1))Γ(λ+ 1) = 0, where Eλ : λ 7→ λ+ 1 is the shift
operator.
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Part II Algorithms
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Let Dn = C⟨x , ∂⟩ = C⟨x1, . . . , xn, ∂1, . . . , ∂n⟩ be the ring of
differential operators with polynomial coefficients with ∂j = ∂/∂xj .
In the sequel, let f be a non-constant real polynomial of
x = (x1, . . . , xn) and φ be a locally integrable function on an open
connected set U of Rn. We assume that φ is a solution of a
holonomic Dn-module M on Uf .

Our main purpose is to present an glorithm to compute a holonomic
system of which f λ+φ is a solution. As we have seen in Part I, the
tensor product Dn[s]f

s ⊗C[x] M , which can be computed as the
restriction to the diagonal of the exterior tensor product, provides us
with such a holonomic system. But the practical computation is hard
in general. So we shall present an alternative method, which is much
more efficient.

Algorithms for Theorems 2 and 3 are immediate applications of this
algorithm.
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Mellin transform

Let us assume that φ is real analytic on Uf and set

φ̃(x , λ) :=

∫ ∞

−∞
tλ+δ(t − f (x))φ(x) dt.

This is well-defined and coincides with f λ+φ as a distribution on
Uf × C+. Then we have∫ ∞

−∞
tλ+tδ(t − f (x))φ(x) dt = φ̃(x , λ+ 1),∫ ∞

−∞
tλ+∂t(δ(t − f (x))φ(x)) dt

= −
∫ ∞

−∞
∂t(t

λ
+)δ(t − f (x)))f (x)φ(x) dt = −λφ̃(x , λ− 1).
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Letting s be an indeterminate corresponding to λ, let us consider the
ring Dn⟨s,Es⟩ of difference-differential operators with the shift
operator Es : s 7→ s + 1. In view of the preceding identities, let us
define the ring homomorphism (Mellin transform of operators)

µ : Dn+1 −→ Dn⟨s,Es ,E
−1
s ⟩

by

µ(t) = Es , µ(∂t) = −sE−1
s , µ(xj) = xj , µ(∂xj ) = ∂xj .

It is easy to see that µ is injective. Hence we may regard Dn+1 as a
subring of Dn⟨s,Es ,E

−1
s ⟩.
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There are inclusions

Dn[s] ⊂ Dn+1 ⊂ Dn⟨s,Es ,E
−1
s ⟩.

Let F(U) be the C-vector space of the Db(U)-valued meromorphic
functions on C. Then F(U) has a natural strucure of left
Dn⟨s,Es ,E

−1
s ⟩-module, which is compatible with that of

Dn[s]-module. In particular, we can regard F(U) as a left
Dn+1-module.

Remark: Since we shall use only µ, we can forget the definition of the
Mellin transform φ̃(t, λ) as a distribution.
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A holonomic system for f λ+φ

Suppose M = Dn/I with a left ideal I of Dn such that Pφ = 0 on Uf

for any P ∈ I . Let G be a finite set of generators of I .

Since Dn⟨s,Es ,E
−1
s ⟩ acts on C[x , s, f −1]f s , we can regard

Dn+1f
s ⊂ C[x , s, f −1]f s as a left Dn+1-module.

We may regard f s as δ(t − f ) in Dn+1f
s . In fact we have

AnnDn+1f
s = Dn+1(t − f ) +

n∑
j=1

Dn+1

(
∂xj +

∂f

∂xj
∂t

)
.
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Step 1: a holonomic difference-differential system for f λ+φ

Introducing a new variable t, set

τ(P) := P

(
x , ∂x1 +

∂f

∂x1
∂t , . . . , ∂xn +

∂f

∂xn
∂t

)
for P = P(x , ∂x1 , . . . , ∂xn) ∈ G . Set

G̃ := {τ(P) | P ∈ G} ∪ {t − f (x)}

and let J be the left ideal of Dn+1 generated by G̃ . Then it is easy to
see that Dn+1/J is holonomic.
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Claim 1: P(f λ+φ) = 0 holds as an element of F(U) for any P ∈ J .

Proof: First note that

f λ+∂xjφ =
(
∂xj +

∂f

∂xj
∂t

)
(f λ+φ)

holds on Uf × {λ ∈ C | Re λ > 1} for any P ∈ Dn.
Let P ∈ G . Then Pφ = 0 holds on Uf . Hence

τ(P)(f λ+φ) = f λ+Pφ = 0

holds on Uf × {λ ∈ C | Re λ > m} with m being the order of P in
∂t . Thus the fundamental lemma and the uniqueness of analytic
continuation imply that τ(P)(f λ+φ) = 0 holds in F(U).

Toshinori Oaku (Tokyo Woman’s Christian University)Some algorithmic problems for holonomic distributions
RIMS, Kyoto University, October 8, 2015 33

/ 47



Claim 2: Let u be the residue class of 1 in M = Dn/I . Then there
exists an inclusion

Dn+1/J ⊂ Dn+1f
s ⊗C[x] M

such that 1 mod J corresponds to f s ⊗ u.

Proof: We have only to show that for P ∈ Dn+1,

P ∈ J ⇔ P(f s ⊗ u) = 0 in Dn+1f
s ⊗C[x] M .

The right implication follows from an argument similar to (and
simpler than) the one for Claim 1.
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Suppose P(f s ⊗ u) = 0 in Dn+1f
s ⊗C[x] M . We can rewrite P in the

form

P =
∑

α∈Nn,ν∈N

pα,ν(x)
(
∂x1 +

∂f

∂x1
∂t

)α1

· · ·
(
∂xn +

∂f

∂xn
∂t

)αn

∂νt

+ Q · (t − f (x))

with pα,ν(x) ∈ C[x ] and Q ∈ Dn+1. Setting Pν :=
∑

α∈Nn pα,ν(x)∂
α
x ,

we get

0 = P(f s ⊗ u) =
∞∑
ν=0

(∂νt f
s)⊗ Pνu ∈ Dn+1f

s ⊗C[x] M .
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It follows that each Pν belongs to I since {∂νt f s} constitutes a free
basis of Dn+1f

s over C[x ]. Hence we have

P =
∞∑
ν=1

∂νt τ(Pν) + Q · (t − f (x)) ∈ J .

Conclusion of Step 1: f λ+φ is a solution of a holonomic

Dn+1-module Dn+1/J ⊂ Dn+1f
s ⊗C[x] M if λ is regarded as a variable

s subject to shift operations.
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Step 2: a holonomic system for f λ+φ with a fixed λ.

We compute the annihilator AnnDn[s](f
s ⊗ u) = J ⊂ Dn[s]. This is

the intersection of the left ideal J and the subring Dn[s] of Dn+1.
This can be done as follows:
Introducing new variables σ and τ . For P ∈ Dn+1, let h(P) ∈ Dn+1[τ ]
be the homogenization of P with respect to the weights

xj ∂xj t ∂t τ
0 0 −1 1 −1

Let J ′ be the left ideal of Dn+1[σ, τ ] generated by

{h(P) | P ∈ G̃} ∪ {1− στ},

where G̃ is a set of generators of J .
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Set J ′′ = J ∩ Dn+1. Since each element P of J ′′ is homogeneous
w.r.t. the above weights, there exists P ′(s) ∈ Dn[s] such that
P = SP ′(−∂tt) with S = tν or S = ∂νt with some integer ν ≥ 0. We
set P ′(s) = ψ(P)(s). Then {ψ(P) | P ∈ J ′′} generates the left ideal
J ∩ Dn[s] of Dn[s]. This procedure can be done by using a Gröbner
basis in Dn+1[σ, τ ].

Now we have a set of generators of

J ∩ Dn[s] = AnnDn[s](f
s ⊗ u)

with f s ⊗ u ∈ Dn+1f
s ⊗C[x] M .
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Fix an arbitrary λ ∈ C. Let f λ be the residue class of f s in
Dnf

λ := Dn[s]f
s/(s − λ)Dn[s]f

s . Set
J0 := {P(λ) | P(s) ∈ J ∩ Dn[s]}. Then we have

Dn/J0 ∼= Dn(f
λ ⊗ u) ⊂ (Dnf

λ)⊗C[x] M ,

i.e, J0 = AnnDn(f
λ ⊗ u).

Claim 1: If λ is not a pole of f λ+φ, then for any P(s) ∈ J ∩ Dn[s],
P(λ)(f λ+φ) = 0 holds as a distribution on U .

Proof: Obvious from the arguments so far.
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Claim 2: Dn/J0 is holonomic.

Proof: Let us denote by f s ⊗′ u the tensor product in Dn[s]⊗C[x] M .
The natural homomorpshism Dn[s]⊗C[x] M −→ Dn+1 ⊗C[x] M induces

ρ : Dn[s](f
s ⊗′ u) −→ Dn[s](f

s ⊗ u) ⊂ Dn+1(f
s ⊗ u) = Dn+1/J .

Specializing s to λ, this induces a sujrective homomorphism

ρ′ : Dn(f
λ ⊗ u) −→ Dn/J0.

This proves that Dn/J0 is holonomic since Dn(f
λ ⊗ u) is holonomic

as a submodule of Dnf
λ ⊗C[x] M .

Toshinori Oaku (Tokyo Woman’s Christian University)Some algorithmic problems for holonomic distributions
RIMS, Kyoto University, October 8, 2015 40

/ 47



Remark: ρ and ρ′ are not injective in general. For example, set
M = D2/(D2x1 + D2∂2) and f = x1x2. Then

∂2(f
s ⊗ u) = ∂2f

s ⊗ u = −x1∂tf
s ⊗ u = −∂tf s ⊗ x1u = 0

holds in D2+1 ⊗C[x] M but ∂2(f
s ⊗′ u) ̸= 0 in D2[s]f

s ⊗C[x] M .
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Generalized b-functions

The inclusion Dn+1f
s ⊂ C[x , f −1, s]f s induces a homomorphism

Dn+1f
s ⊗C[x] M −→ C[x , f −1, s]f s ⊗C[x] M .

We have computed AnnDn+1(f
s ⊗ u) ∩ Dn[s]. Thus a generator b(s)

of C[s] ∩ (AnnDn+1(f
s ⊗ u) ∩ Dn[s]) + Dn[s]f is a multiple of the

b-function for f and u ∈ M . If f : M → M is injective, then b(s)
coincides with the b-function because the above homomorphism is an
isomorphism.
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Difference equations for the integral

As we have seen f λ+φ satisfies a holonomic Dn+1-module Dn+1/J .

Hence if Z (λ) :=

∫
Rn

f λ+φ dx is well-defined, e.g., if φ has compact

support, or rapidly decreasing, then Z (λ) is a solution of the
holonomic D1-module

Dn+1/(J + ∂x1Dn+1 + · · ·+ ∂xnDn+1)

with D1 = ⟨t, ∂t⟩. Hence by inverse Mellin transform we obtain linear
difference equations for Z (λ).
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Example 1

Set f = x3 − y 2 ∈ R[x , y ]. Since the b-function of f is
bf (s) = (s + 1)(6s + 5)(6s + 7), possible poles of f λ+ are −1− ν,
−5/6− ν, −6/7− ν and they are at most simple poles. The residue
Resλ=−1f

λ
+ is a solution of

D2/(D2(2x∂x + 3y∂y + 6) + D2(2y∂x + 3x2∂y ) + D2(x
3 − y 2)).

Resλ=−5/6f
λ
+ is a solution of D2/(D2x + D2y). Hence it is a constant

multiple of δ(x , y).

Resλ=−7/6f
λ
+ is a solution of D2/(D2x

2 +D2(x∂x + 2) +D2y). Hence
it is a constant multiple of δ′(x)δ(y).
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Example 2

Set f = x3 − y 2. φ(x , y) := exp(−x2 − y 2) is a solution of
M := D2/(D2(∂x + 2x) + D2(∂y + 2y)). The generalized b-function
for f and u := [1] ∈ M is bf (s) = (s + 1)(6s + 5)(6s + 7).

Z (λ) :=

∫
R2

f λ+φ dxdy is annihilated by the difference operator

32E 4
s + 16(4s + 13)E 3

s − 4(s + 3)(27s2 + 154s + 211)E 2
s

− 6(s + 2)(s + 3)(36s2 + 162s + 173)Es

− 3(s + 1)(s + 2)(s + 3)(6s + 5)(6s + 13).

From this we see that −7/6 is not a pole of Z (λ).
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Example 3

Set φ(x) = exp(−x − 1/x) for x > 0 and φ(x) = 0 for x ≤ 0. Then
φ(x) belongs to S(R) and satisfies a holonomic system

M := D1/D1(x
2∂x + x2 − 1).

The generalized b-function for f = x and u = [1] ∈ M is s + 1.

Z (λ) :=

∫
R
xλ+φ(x) dx is entire and satisfies a difference equation

(−E 2
λ + (λ+ 2)Eλ + 1)Z (λ) = 0.

This can also be deduced by integration by parts.
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Example 4

Set φ1(x) = exp(−x − 1/x) for x > 0 and φ1(x) = 0 for x ≤ 0. Set
φ(x , y) = φ1(x)e

−y . Then φ satisfies a holonomic system

D2/(D2(x
2∂x + x2 − 1) + D2(∂y + 1)).

The generalized b-function for f := y 3 − x2 and u = [1] ∈ M is s +1.

Z (λ) :=

∫
R2

f λ+φ(x) dxdy is well-defined since f+ = 0 if y < 0 and

satisfies difference equations: ...
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