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Abstract

Let f be a real polynomial of x = (x1,...,x,) and ¢ be a locally integrable function of x
which satisfies a holonomic system of linear differential equations. We study the distribution
fﬁgo with a meromorphic parameter A, especially its Laurent expansion and integration, from
an algorithmic viewpoint in the framework of D-module theory.

§1. Introduction

Let f be a non-constant real polynomial in = (z1,...,2,) and ¢ be a locally
integrable function on an open subset U of R™. Then ¢ can be regarded as a distribution
(generalized function in the sense of L. Schwartz) on U. We assume that there exists
a left ideal I of the ring D,, of differential operators with polynomial coefficients in =
which annihilates ¢ on Uy := {x € U | f(x) # 0}, i.e., Py vanishes on Uy for any P € I.
Moreover, we assume that M := D,,/I is a holonomic D,-module. In this situation, ¢
is called a (locally integrable) holonomic function or a holonomic distribution.

Let us consider the distribution figo on U with a holomorphic parameter A. This
distribution can be analytically extended to a distribution-valued meromorphic function
of A on the complex plane C. Such a distribution was systematically studied by Kashi-
wara and Kawai in [2] with f being, more generally, a real-valued real analytic function.
Their investigation was focused on a special case where M has regular singularities but

most of the arguments work without this assumption.
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The main purpose of this article is to give algorithms to compute

1. A holonomic system for the distribution f iogp with Ay not being a pole of fjlgo.

2. A holonomic system for each coefficient of the Laurent series of fﬁgp about an
arbitrary point.

3. Difference equations for the local zeta function Z(\) = [5, [y da.

As was pointed out in [2], an answer to the first problem provides us with an algorithm to
compute a holonomic system for the product of two locally L? holonomic functions. Note
that the product does not necessarily satisfies the tensor product of the two holonomic
systems for both functions.

In Section 2, we review the theoretical properties of f ﬁcp mostly following Kashiwara
[1] and Kashiwara and Kawai [2] in the analytic category; i.e, under a weaker assumption
that f is a real-valued real analytic function and that ¢ satisfies a holonomic system of
linear differential equations with analytic coefficients.

In Section 3, we give algorithms to computes holonomic systems considered in
Section 2. As a byproduct, we obtain an algorithm to compute difference equations for
the local zeta function, which was outlined in [4].

§ 2. Theoretical background

Let D¢ be the sheaf on C™ of linear partial differential operators with holomorphic
coefficients, which is generated by the derivations 9; = 0., = 0/0x; (j =1,...,n) over
the sheaf Ocn of rings of holomorphic functions on C™, with the coordinate system
x=(x1,...,2,) of C™.

We denote by Db the sheaf on R™ of the Schwartz distributions. Assume that
f = f(z) is a nonzero real-valued real analytic function defined on an open connected
set U of R™. Let ¢ be a locally integrable function on U. Then fj:go is also locally
integrable on U for any A € C with Re A > 0, where f(z) = max{f(z),0}.

Let M be a holonomic Dcn-module defined on an open set €2 of C™ such that
U C QNR"™ We also assume that f is holomorphic on 2. We say that a distribution
@ is a solution of M on U if there exist a section u of M on U and a Dcr-linear
homomorphism & : Denu — Db defined on U such that ®(u) = ¢. As a matter of fact,
we have only to assume that ¢ is a solution of M on Uy := {z € U | f(z) # 0} and
that M is holonomic on Qf := {x € Q| f(z) # 0}.

§2.1. Fundamental lemmas

Under the assumptions above, fj’)gp is a Db(U)-valued holomorphic function of A
on the right half-plane
Ci:={A€C|Re >0}
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In other words, let ODb be the sheaf on C x R™ 35 (A, z) of distributions with a holo-
morphic parameter \. Then f g\_cp belongs to

ODH(C,. x U) = {U()\,JU) € Db(C4 x U) | % = o}.

Let s be an indeterminate corresponding to A. The following lemma (Lemma 2.9 of [2])
plays an essential role in the following arguments.

Lemma 2.1 (Kashiwara-Kawai [2]).  Let ' be an open set of C™ such that V :=
R™N€Y is non-empty and contained in U. Assume P(s) € Den (¥)[s] and P(N)(f1¢) =
0 holds in ODb(Cy x Vi) with Vy := {z € V| f(x) # 0}. Then P(\)(f}¢) = 0 holds
in ODH(C4 x V).

Let us generalize this lemma slightly. For a positive integer m, let us define a
section f7(log f+)™¢ of the sheaf ODb on Cy4 x U by

(F2og )™, 1) = /{ s PO R S @) de (W € W)

where C§°(U) denotes the space of C*° functions on U with compact supports. In fact,
fﬁ (log f1 )™ is the m-th derivative of the distribution fﬁgp with respect to .

Lemma 2.2.  Let Q' be an open set of C™ such that V :=R™" N Q' is non-empty
and contained in U. Let ¢q,...,om be locally integrable functions on V. Assume

Pi(s) € Den (Y)[s] (k=0,1,...,m) and
(2.1) > Pe(M)(f(log f1)Fer) =0
k=0

holds in ODb(Cy x V). Then (2.1) holds in ODb(C4 x V).

Proof. We follow the argument of the proof of Lemma 2.9 in [2]. Let ¢ belong to
C§° (V) with K := supp ¢. Let x(t) be a C* function of a variable ¢ such that x(¢) =1
for [t| <1/2 and x(t) =0 for |t| > 1. Then we have

<ZPk (f2(log f+)*ep > <2Pk (f2(log f1) o), X(£)¢>
—Z/ F2(og f1)*or" Pr(A )( (f)¢> dx

for any 7 > 0, where * P;(\) denotes the adjoint operator of Py ()). Let my be the order
of Py(s) and dj, be the degree of Py(s) in s. Then there exist constants C} such that

sup
reK

tPe(\) (X(@)qb(x))‘ < Op(1+ )%™ (0 <Vr <1).
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Assume Re A > max{my; + 1|0 <k <m} and 0 < 7 < 1. Then we have

| oo m) (x(D)s) da
174

< Cu(1 4 A 7= / £ (log £+ )i ()| da

{zeV|0< f(x)<T}

< KIC(1 + |A)derRe A—mk—l/ [pr ()| dz
{zeVv]o<f(z)<t}

since |logt|¥ < k!t~ holds for 0 < ¢ < 1. This implies

<2Pk (f2(og f1)*ex), >— lim Z/ S (log f1) 1" Pe(A )(X(f)¢) dz = 0.

The assertion of the lemma follows from the uniqueness of analytic continuation. O

§2.2. Generalized b-function and analytic continuation

We assume that there exists on €2 a sheaf 7 of coherent left ideals of D¢n which
annihilates ¢ on Uy = {z € U | f(z) # 0}, namely, Py = 0 holds on W N Uy for
any section P of Z on an open set W of C". We set M = D¢n/Z and denote by u
the residue class of 1 € Dx modulo Z. In the sequel, we assume that M is holonomic
on Qf ={z € Q| f(z) # 0}, ie., that Char(M) N7~ 1(Qy) is of dimension n, where
Char(M) denotes the characteristic variety of M and 7 : T*C™ — C" is the canonical
projection.

Let £ = Ocn[f~1, s]f* be the free Ocn[f~1, s|-module generated by the symbol
f%. Then L has a natural structure of left Dcn[s]-module induced by the derivation
O;f* = s(0f/0x;) f~1 f*. Let us consider the tensor product £L®e..,, M of Ocn-modules,
which has a natural structure of left D¢n [s]-module.

Lemma 2.3.  Let v and P(s) be sections of M and of Dcn[s] respectively on
an open subset of Q. Then P(s)(f* ® v) = 0 holds in L ®o.. M if and only if
(f™°P(s)f*)(1 ®v) =0 holds in C[s] ®c M for a sufficiently large m € N.

Proof. Set M([s] = Cl[s|] ®c M, which has a natural structure of left module over
Cls]®cDcn = Den[s]. Then we have Lo, M = LOo,..[s) M]s] as left Den[s]-module.
Let v be a section of M(s]. Since £ is isomorphic to Ocx[f 71, 5] as O¢n[s]-module, f*®@v
vanishes in Lo, s M|s] if and only if 1®@v vanishes in Ocn [f 1, s] Qo (s M]s]. First,
let us show that this happens if and only if f™v = 0 in M[s] with some m € N.

Let p : Ocnls,t] — Ocnls, f7!] be the homomorphism defined by p(h(s,t)) =
h(s, f~1) for h(s,t) € Ocnls,t]. Let K be the kernel of p. Then we have an exact
sequence

K @0en(s) Mls] — Ocn[s, 1] ®0 () MIs] "5 Ogals, f 1] @0 (s M(s] — 0.
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Hence 1 ® v vanishes in Ocn[s, f71] ®o.(s) M|s] if and only if there exists h(s,t) =
>t hi(s)tF € K such that 1@ v = h(s,t) ® v holds in O¢n[s, t] @0, 5] M[s], which is
equivalent to hy(s)v = doxv (K =0,1,...,m) since Ocn|s,t] is free over Ocn[s]. On the
other hand, 7" hy(s)f =% = p(h(s,t)) = 0 implies

0= f"ho(s)v+ f™  hi(s)v+ -+ fRpm_1(8)v + Ry (s)v = f™0.

Conversely, if f"v = 0 for some m € N, then we have 1 ® v = f7 ® f™v = 0 in
OC" [Sv f_l] ®O<cn [s] M.
Let P(s) be a section of D¢n[s] of order m. For i =1,...,n,

0i(f*®v) =@ (sfi + fO)v =@ (f 0
holds in £ ®o,,.[s) M([s] with f; = 0f/0z;. This allows us to show that
P(s)(f*®@v) =" (f"P(s)f*)v

holds in £ ®o.,.[s) M[s]. (Note that f"~*P(s)f* belongs to Dcn[s].) Summing up, we
have shown that P(s)(f* ® v) vanishes in £ ®o,,[s) M|s] if and only if (f'=*P(s)f*)v
vanishes in M(s] for some | > m. O

Lemma 2.3 with P(s) = 1 immediately implies

Proposition 2.4.  Let M[f™'] := Ocn[f ] ®opn M be the localization of M
with respect to f, which has a natural structure of left Dcn-module. Then the natural

homomorphism L @0, M — L @ocn ./\/l[f_l] 18 an isomorphism.

Proposition 2.5.  Let P(s) be a section of Dcn[s] on an open set Q' of C™ and
suppose P(s)(f*@u) =0 in L @0, M. Set V.=UNQ. Then P(\)(f}¢) =0 holds
in ODb(Cy x V).

Proof. Let O4oDb be the sheaf on R™ associated with the presheaf
W»—>li;n(9Db({A€C[ReA>a}><W)

for every open set W of R", where the inductive limit is taken as a — oo. The C-bilinear
sheaf homomorphism

Lx M3 (a(s)f*™, Pu) — (a(\) f2~™)Pp € O4Db

with a(s) € Ox|[s], m € N, P € Dx, which is well-defined and Ocn-balanced on Vy

since fi_m is real analytic there, induces a D¢r-linear homomorphism

U: L @0 M — OposDb
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on V; such that ¥(a(s)f*™™ @ Pu) = a(\)f} " Pyp. In particular, if P(s) € Den[s]
satisfies P(s)(f* ® u) = 0 in £ ®o., M, then P(A)(f2¢) = 0 holds in O1.Db(Vy),
hence also in O o Db(V) by Lemma 2.1. Since f}¢ belongs to ODb(C, x V), it follows
that P(f2¢) = 0 holds in ODb(C x V). This completes the proof. O

Kashiwara proved in [1] (Theorem 2.7) that on a neighborhood of each point p of
€2, there exist nonzero b(s) € C[s] and P(s) € D¢n[s] such that

PG)(ff @u) =b(s)f*@u in LR, M.

Such b(s) of the smallest degree b(s) = b,(s) is called the (generalized) b-function for f
and u at p.
Assume p € U. Then by the proposition above,

PN (f2T) = b\ fre

holds in ODH(Cy x V) with an open neighborhood V' of p. It follows that fj)go is a
Db(V)-valued meromorphic function of A on C. Let us assume that U is relatively
compact in €2. The poles of fj}go are contained in

{A=k|b,(\)=0 (3pecU), keN}.

Proposition 2.6 (Lemma 2.10 of [2]).  There exists a positive real number € such
that f¢ belongs to ODb({\ € C | Re A > —¢} x U).

Proof. Let Ao be an arbitrary pole of f2¢. There exists 1 € C§°(U) such that Ag
is a pole of Z(\) := (f2¢,v). In particular, |Z (Ao + t)| tends to infinity as ¢ — +0.
On the other hand, Z(\) is continuous on {\ € C | Re A > 0}. This implies Re Ay < 0.
The conclusion follows since there are at most a finite number of poles of f j:go in the
set {A € C|Re A > —1}. O

In conclusion, f1¢ is a Db(U)-valued meromorphic function on C whose poles are
contained in {\ € C | Re A < 0}.

§2.3. Holonomicity of f_ﬁgp and its applications

Let f, ¢, M = Dcn /T be as in the preceding subsection. Let N = Dca [s](f*®u) be
the left Dcn [s]-submodule of L&, M generated by f°®@u. Theorem 2.5 of Kashiwara

[1] guarantees that N), := N /(s — A\g)N is a holonomic Dcn-module on Q for any
Ao € C.

Proposition 2.7.  Let Ao be an arbitrary complex number and f2° @¢ the residue
class of f* @ u € N modulo (s — Xo)N.
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1. Ny is isomorphic to M as Dcn-module on Q.

2. If M is f-saturated, 1.e., if fv = 0 with v € M implies v = 0, then there is
a surjective Den-homomorphism ® : No — M on Q such that ®(f° @ u) = u.

Moreover, ® is an isomorphism on ;.

Proof. Since M[f~!] = M on ¢, we may assume that M is f-saturated. In view
of Lemma 2.3 and the definition of Ny, P € D¢n annihilates f° ® u if and only if there
exist Q(s) € Dcnls| and an integer m > ord Q(s) such that (f™*Q(s)f*)(1 ®@u) =0
in M[s] and P = Q(0). If there exist such Q(s) and m, set

FTQ()f = Qo+ Qus -+ Qus' (Qi € Den).

Then Q;u = 0 holds for any i. In particular, Qg = f""P annihilates u. This implies
Pu = 0 since M is f-saturated. Hence the homomorphism ® is well-defined.

Now assume p € Qf and Pu = 0 in the stalk M,, of M at p. Then Q(s) := f*Pf~*
belongs to Dcr 4 [s] and annihilates f® ® u by Lemma 2.3. Hence P = Q(0) annihilates
f% ® u. This implies that ® is an isomorphism on € i Ol

Theorem 2.8. If \g is not a pole of f_ﬁgo, then fi‘)(p is a solution of Ny, .

Proof. Assume that \g € C is not a pole of figp. Let P be a section of D¢» which
annihilates f*° ® u. Then there exist Q(s), R(s) € Dcn[s] such that

P=Q(s)+ (s—Xo)R(s), Q(s)(f°®@u)=0in N.

Proposition 2.5 implies that Q(\)(f?¢) vanishes as section of the sheaf ODb. In par-
ticular, P( fio ) = Q(Xo)( fj:o ) = 0 holds as distribution. Thus the homomorphism

Ny = Den (f2 @ u) 3 P(f2 @ u) — P(f20¢) € Db
is well-defined and Dcn-linear. Hence f iogo is a solution of N),. 0

The following two theorems are essentially due to Kashiwara and Kawai [2] although
they are stated with additional assumptions and stronger results.

Theorem 2.9. ¢ is a solution of the holonomic Dcn-module Ny.

Proof. First note that Oca[f~1, s](—f)® is isomorphic to Ocn[f~1, s|f* as left
Den[s]-module since 9;(—f)* = sf;f~1(—f)* holds in Ocn[f71, s](—f)® with f; =
Of /0x;. Assume that P(f° ® u) = 0 holds in Ny = N/sN. Then there exist
Q(s), R(s) € D¢n[s] such that

P=Q(s)+ sR(s), Q(s)(f°®u)=0inN.
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Let 0(t) be the Heaviside function; i.e., (t) = 1 for ¢ > 0 and 6(t) = 0 for ¢ < 0. Then
we have 0(f) = f9 and 6(—f) = (—f)%. Theorem 2.8 implies that P = Q(0) annihilates
both 6(f)e and 6(—f)p, and hence also ¢ = 0(f)p + 0(—f)p. Thus ¢ is a solution of
No. O

Theorem 2.10.  Let @1 and o be locally LP? and L? functions respectively on
an open set U C R™ with 1 < p,q < oo and 1/p+ 1/q =1. Assume that p1 and p2 are
solutions of holonomic Dcn-modules My and Mo respectively on U. Then for any point
xg of U, there exists a holonomic Dcn-module M on a neighborhood of xo of which the

product p1ps is a solution.

Proof. There exist analytic functions f; and f; on a neighborhood V of xy such
that the singular support (the projection of the characteristic variety minus the zero
section) of My, is contained in f = 0 for k = 1,2. Set f(z) = f1(2)f1(Z) f2(2) f2(Z).
Then f(x) is a real-valued real analytic function and ¢; and ¢, are real analytic on V.

Then it is easy to see, in the same way as in the proof of Theorem 2.8, that ¢1ps is a
solution of M ®p., M2 on Vy. To complete the proof, we have only to apply Theorem
2.9 to M1 ®p.. M2 and @12 in place of M and ¢ respectively. O

§2.4. Laurent coefficients of f_)pgo

Let f, ¢, M be as in preceding subsections.

Theorem 2.11.  Let p be a point of U. Then each coefficient of the Laurent
expansion of fj}go about an arbitrary A\g € C is a solution of a holonomic Dcr-module
on a common neighborhood of p.

Proof. Fix m € N such that Re \g + m > 0. By using the functional equation
involving the generalized b-function, we can find a nonzero b(s) € Cls| and a germ P(s)
of D¢nls| at p such that

BN e = PA)(f ™).

Factor b(s) as b(s) = (s — Ag)'e(s) with c(s) € C[s] such that ¢(\g) # 0 and an integer
{ > 0. Then we have

(A= Ao) o = ﬁmx ).

The right-hand side is holomorphic in A on an neighborhood of A = \y. Let

[e.e]

fro= > (A=) ¢

k=—1
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be the Laurent expansion with ¢ € Db(U), which is given by

= i S (') = et S (o)
PR U k) ash, oNFE O ) T R a5 ONFE \ (V) )
Hence there exist Qr; € Dc» such that

l+k

(2.2) %—ZQM 20 (log f4) ).

First let us show that f ’\°+m(log f+)7 ¢ with 0 < j < k satisfy a holonomic system.
Consider the free Ocx[s, f ~1]-module

£ = Ocals, 17 @ Ocnls, £ 1og f © Ocnls, £V (log )2 & - |

which has a natural structure of left D¢n[s]-module. Let

N k] := Den[s)(f* @ u) + Den[s)((f* log f) @ u) + -+ - + Den [s]((f*(log f)*) @ u)

be the left Den[s]-submodule of £ ®o., M generated by (f*(log f)’) ® u with j =
0,1,...,k. Tt is easy to see that N[k]/N[k — 1] is isomorphic to N' = N[0] as left
Dcr [s]-module since

P(s)((f*(log f)*) @ u) = (f*""(log /)*) @ (f"~*P(s)f*)u  mod N[k —1]

holds for any P(s) € Dcn[s] with m = ord P(s). Moreover, Ny, [k] :== N[k]/(s— Xo)N[K]
is a holonomic D¢r-module since Ny, [k] /N, [k — 1] is isomorphic to Ny, = N),[0], and
hence is holonomic as left Der-module.

Let (f*t™(log f)7) @ u € Ny, +m[k] be the residue class of (f*(log f)?) ® u modulo
(s — Ao — m)N[k]. Suppose Z?:o Pi((f*™™(log f)7) ® u) vanishes in Ny,+m[k] with
P; being a section of D¢~ on an open neighborhood of a point p of U. Then there exist
Q;(s) € Dcnls] such that

k
ZPJ “(log f)7) @u) = (s — Xo—m) Y Q;(s)((f*(log f)) @ u)

Jj=

holds in M[k]. Then it is easy to see that

<.
I M??.
o

k
(2.3) ZP J(f2(log f1)79) = (A= X0 —m) > Q;(N)(f2(log f+)'¢)

holds in (’)Db(C+ x W) with an open neighborhood W of p. Lemma 2.2 and analytic
continuation imply that (2.3) holds in ODb(C4 x W). By Proposition 2.6, we have in
Db(W)

k
> (10t (log f1)7)g) = 0.
7=0
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In conclusion, with k replaced by [ + k, there exists a Dcn-homomorphism ¢ :
Niy+m|l + k] — Db such that

O((fr ™ (log f)7) @u) = f " (log f1 ) (0<j<1+k).

Set
I+k

w= " Qui((f(log /)) ®u), My = Deww.
§=0
Then My, is a Den-submodule of N[l + k] and hence holonomic. Since ®(w) = @y
in view of (2.2), ¢ is a solution of M. This completes the proof. O

§3. Algorithms

We give algorithms for computing holonomic systems introduced in the previ-
ous section assuming that f is a real polynomial and that M is algebraic, i.e., de-
fined by differential operators with polynomial coefficients. Let D, := C(z,0) =
C(x1,y...,%n,01,...,0,) be the ring of differential operators with polynomial coeffi-
cients with 9; = 9/0x;. The ring D,, is also called the n-th Weyl algebra over C.

In the sequel, let f be a non-constant real polynomial of x = (x1,...,x,) and ¢
be a locally integrable function on an open connected set U of R"™. We assume that
there exists a left ideal I of D,, which annihilates ¢ on Uy, i.e., Py = 0 holds on Uy
for any P € I, such that M := D, /I is a holonomic D,-module. We denote by u
the residue class of 1 € D,, modulo I. Let L = C[z, f=1, s]f* be the free C[xz, f~1, s]-
module generated by f¢, which has a natural structure of left D, [s]-module. Let N :=
Dy, [s](f* ® u) be the left D,,-submodule of L ®c(,) M generated by f* ® u.

As was established in the previous section, fﬁgo is a Db(U)-valued meromorphic
function on C and is a solution of N.

§3.1. Mellin transform
Let us assume that ¢ is real analytic on Uy and set
pa )= [ B~ f@)ela)dt
This is well-defined and coincides with f f‘rgo as a distribution on Uy x C,.. Then we have

[t - s@et e = g+ ),

— 0o

| 2o — swpeyar=— [ o) - @)@ de = -XpleA - 1)

— 00
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Let D,+1 = D,(t,0;) be the (n + 1)-th Weyl algebra with 0; = 9/0t. Let us consider
the ring D, (s, Es, E;') of difference-differential operators with the shift operator Fj :
s — s + 1, where s is an indeterminate corresponding to A. In view of the identities
above, let us define the ring homomorphism (Mellin transform of operators)

t: Dyy1 — Dyp(s, B, E7Y)

by
M(t) = Ej, ”(615) = _SE3_17 IU(I']) =Ty, ,u(ax3> = amj-

It is easy to see that u is well-defined and injective since [0, t] = [u(0;), u(t)] = 1. Hence
we may regard D, .1 as a subring of D, (s, Es, E7'). Since u(d;t) = —s, we can also
regard D, [s]| as a subring of D,, 1. Thus we have inclusions

Dn[S] C Dn+1 C Dn<37Ests_1>

of rings and L ®c[,) M has a structure of left D, (s, Es, E; B-module compatible with
that of left D,,[s]-module. Let F(U) be the C-vector space of the Db(U)-valued mero-
morphic functions on C. Then F(U) has a natural structure of left D, (s, Es, E;1)-
module, which is compatible with that of D,[s]-module. In particular, we can regard
F(U) as a left D,,1-module.

§3.2. Computation of N = D, [s](f* ®u)

The inclusion D,, 11 f* C L = C[z, f~1, 5] % induces a natural D,,; -homomorphism

Dy f? Qcly) M —— L ®Oclz) M

U U

N’ Y N
where N’ is the left D, [s]-submodule of D, 1f* ®c[y) M generated by f°*® u and N
is the left D, [s]-submodule of L ®c(,) M generated by f* ® u. The homomorphism ¢
induces a surjective D,,[s]-homomorphism ¢/ : N’ — N.

Proposition 3.1.  The homomorphism ¢ is injective if and only if M is f-
saturated; i.e., the homomorphism f : M — M 1is injective.

Proof. First note that D, 11 f? is isomorphic to the first local cohomology group
Clz,t, (t—f)~1]/C[x,t] of C[x,t] supported in the non-singular hypersurface t— f(z) = 0

since

t—HF =0, (On, + fi0)f =0 (i=1,...,n).
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In particular, D,,+1f° is a free C|z]-module generated by 85 f® with 7 > 0. Hence an
arbitrary element w of D, 41 f® ®c[y) M is uniquely written in the form

k
w=) (8]1°) ®uy
=0

J

with u; € M and k£ € N. Then

k
w) =) (~Ws(s =1 (s =i+ Df 7 @

J=0

vanishes if and only if f*77 ® u; = 0, which is equivalent to f™iu; = 0 with some
m; € N by Lemma 2.3, for all j =0,1,...,k. This completes the proof. U

Let M be the left D,-submodule of the localization M[f~!] := Clz, f~] ®cle) M
which is generated by 1 ® u. Then M is f-saturated and the natural homomorphism

L AClz] M — L QC[x] M

is an isomorphism by Lemma 2.3.

An algorithm to compute M|[f~!] was presented in [7] under the assumption that
M is holonomic on C™ \ {f = 0}. It provides us with an algorithm to compute M, i.e.,
the annihilator of 1 ® u € M[f~!]. Hence we may assume, from the beginning, that
M is holonomic and f-saturated. Then ¢/ : N’ — N is an isomorphism by Proposition
3.1. The f-saturatedness is equivalent to the vanishing of the zeroth local cohomology
group of M with support in f = 0, which can be computed by algorithms presented in
[31,[8],[6]-

Thus we have only to give an algorithm to compute the structure of N’ assuming
M to be f-saturated. We follow an argument introduced by Walther [8]. Note that we
gave in [3] an algorithm based on tensor product computation which is less efficient.

Definition 3.2.  For a differential operator P = P(x,0) € D, set
7(P) := P (2,02, + f101, ..., 0, + fuOr) € Dny1

with f; = O0f/0x;. This substitution is well-defined since the operators 0., + f;0;
commute with one another and [0, + f;0;, x;] = d;; holds.

Moreover, for a left ideal I of D,,4+1, let 7(I) be the left ideal of D, which is
generated by the set {7(P) | P € I}.

Lemma 3.3. 7(P)(f°®v) = f°® (Pv) holds in L ®c[y) M for any P € D,, and
ve M.
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Proof. By the definition of the action of D11 on L ®c[,; M via the Mellin trans-

form, we have

(Day + [0)(f* ®0) = sf 7 f3f @ 0+ 7 0 (00,0) — sf37 f @ 0 = [7 @ (9,v).
This implies the conclusion of the lemma. O

Proposition 3.4.  Let I be a left ideal of D,, and set M = D, /I with w € M
being the residue class of 1 modulo I. Let J be the left ideal of D,,+1 which is generated
by T(I)U{t— f(x)}. Then J coincides with the annihilator Annp . (f*®@u) of f*®u €
D1 f5 ®cla) M.

Proof. We have only to show that for P € D,, 1 the equivalence
PecJ = P(fs (29 U) =0 in Dn_|_1fs ®(C[a:] M.

Suppose Q belongs to J. Then P annihilates f* ® u by Lemma 3.3.
Conversely, suppose P(f* ® u) = 0 in Dy41f° ®c[;) M. We can rewrite P in the

form

P= Y pan@d (00 + L0)" (004 L0)" 1 Q- (@)

Ox Ox
aeN” veN 1 n

with pa,, (7) € Clz] and Q € Dyy1. Setting P, := Y oo Pa, (7)0g, we get

oo

0=P(f @u)=> (0/f")®Pu € Dy f* @cpa) M.
v=0

It follows that each P, belongs to I since {9} f°} constitutes a free basis of D,,11 f* over
C[x]. Hence we have

P=) 0/7(P)+Q-(t— f(z)) €J.

This completes the proof. O

In order to compute the structure of the D, [s]-submodule N = D, [s](f* ® u) of
Dyy1f® ®cla) M, we have only to compute the annihilator

AnnDn[s](fS ® u) = Dn[s] nJ,

where we regard D, [s] as a subring of D,, ;1. This can be done as follows:
Introducing new variables o and 7, for P € D, 1, let h(P) € D,41[7] be the
homogenization of P with respect to the weights
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Let J' be the left ideal of D,,;1[o, 7] generated by
{h(P)| P e G}U{l—0T},

where G is a set of generators of J.

Set J” = J N D,41. Since each element P of J” is homogeneous with respect to
the above weights, there exists P’(s) € D,[s] such that P = SP/(—0t) with S = t¥
or S = 9} with some integer v > 0. We set P'(s) = ¢¥(P)(s). Then {¢(P) | P € J"}
generates the left ideal J N D,[s] of D,[s]. This procedure can be done by using a
Grobner basis in D, 41]0,7]. In conclusion, we have a set of generators of J N D,,[s].
Then N’, and hence N also if M is f-saturated, is isomorphic to D,[s]/(J N D,[s]) as
left D,,[s]-module.

The generalized b-function for f and u can be computed as the generator of the
ideal

Cls] N (Annp, (o f* ® u+ Dy[s]f)

of C[s] by elimination via Grébner basis computation in D, [s].

§3.3. Holonomic systems for the Laurent coefficients of ff;gp

Let \g be an arbitrary complex number. Our purpose is to compute a holonomic
system of which each coefficient of the Laurent expansion of f 4’\_g0 is a solution.
Let bo(s) be the (global) b-function of f and u. We can find a Py(s) € D,[s] such
that
Po(s)(f*T @ u) = bo(s) f* @ u

holds in N by, e.g., syzygy computation. Take m € N such that Re \g + m > 0 or
bo(Xo + m+ k) # 0 (Vk € N). Then X\ + m is not a pole of fe.
We can find a nonzero polynomial b(s) and P(s) € D,[s] such that

BNFY = PO
In fact, we have only to set
P(s):=PFPo(s)Po(s+1)---Py(s+m—1), b(s):=bo(s)bo(s+1)---bo(s+m —1).

Factorize b(s) as b(s) = c(s)(s—Xo)" with ¢(\g) # 0. Then f? has a Laurent expansion

of the form

fro= Y (A=20) e

k=—1
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around Ao, where @i € Db(U) is given by

1 a l+k I+k |
o= T, (ﬁ) (c(V) TP f) Zng N0t (log £)9)
with
0 1 [( 0 >l+k—j( (A)—lp()\))
ki i—m ——————— _ c
J G+ k—j)! O\ .
Let

=Clz, 1, 8]f* ©Cla, f1,5]f*log f & C[x, f 1, 5] f*(log f)* @

be the free C[x, f~!, s]-module with a natural structure of left D, (s, ds)-module. Con-
sider the left D,,[s]-submodule

N[K] = Dals](f* ® ) + Da[s]((f*log f) @ u) + - + Dy [s]((*(log f)*) @ u)
of L ®clz] M. For a complex number Ao, set
Ny, [k] = N[k]/(s = Ao) N [K].
Let us first give an algorithm to compute the structure of N[k

Proposition 3.5.  Let Gy be a set of generators of the annihilator Annp, 4 (f*®
u) =JNDy[s]. Let eg = (1,0,...,0), -+, exgy1 = (0,...,0,1) be the canonical basis of
ZF+L. For each Q(s) € Gy and an integer j with 0 < j < k, set

QW (s) = Z (‘Z) %Q_(is)ei-i-l € (Dn[s])"*.

1=

Let Jy, be the left D, [s]-submodule of (Dy,[s])** generated by Gy := {QU)(s) | Q(s) €
Go, 0 < j <k}. Then (D,[s])*Tt/Jy is isomorphic to N[K].

Proof. Let w : (D,[s])**! — NJ[k] be the canonical surjection. Let Q(s) belong
to Gy. Differentiating the equation Q(s)(f* ®u) = 0 in N[k]| with respect to s, one gets

> (1) S tog 1) 0 w) =o.

1=0

Hence Jj is contained in the kernel of . Conversely, assume that

Q(s) = (Qo(s), Qu(s); - -, Qr(s))
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belongs to the kernel of w. This implies Qx(s)(f* ® u) = 0 since N[k]/N[k — 1] is
isomorphic to N = D,[s](f* ®u). Hence Q(s) — ,(Ck)(s) belongs to the kernel of w, the
last component of which is zero. We conclude that Cj(s) belongs to Ji by induction. [

Thus we have

Nxo[k] = (D)™ / Tl s=x0 Jkls=x0 :={Q(Xo) | Q(s) € Jx}.

Set
I+k

wi= Y Qr((f+ " (log f))) @u), My = Dyw.
i=0

Then we have

Pw=0 <& P(Qko, Qkis---Qki+k) € Jitk|s=ro+m-

Thus we can find a set of generators of Annp_ w by computation of syzygy or intersec-
tion. As was shown in §2.4, ¢y is a solution of the holonomic system M.

§ 3.4. Difference equations for the local zeta function

In the sequel, we assume that ¢ is a locally integrable function on R™. As we have
seen so far, f f;gp € F(R™) is a solution of the holonomic D,,1-module D,,,1/J. Hence
if the local zeta function Z(\) := fRn fj’)cp dx is well-defined, e.g., if ¢ has compact
support, or else is smooth on R™ with all its derivatives rapidly decreasing on the set
{z € R" | f(x) > 0}, then Z()\) is a solution of the integral module

Dn—|—1/(J + awan—l—l +---+ amnDn—l—l)

of D, 41/J, which is a holonomic module over Dy = C(t,0;). This D;-module can be
computed by the integration algorithm which is the ‘Fourier transform’ of the restriction
algorithm given in [6] (see [5] for the integration algorithm). Then by Mellin transform
we obtain linear difference equations for Z(\). Thus we get

Theorem 3.6.  Under the above assumptions, Z(\) satisfies a non-trivial linear

difference equation with polynomaial coefficients in \.

Example 3.7. T'(A+1)= [ ate " de = [7_a)e ™ dw satisfies the difference
equation

(Bx — A+ 1)T(A+1) =0,

where E) : A — A+ 1 is the shift operator.
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§3.5. Examples

Let us present some examples computed by using algorithms introduced so far and
their implementation in the computer algebra system Risa/Asir.

Example 3.8. Set f = 23 — y? € R[x,y] and ¢ = 1. Since the b-function of f
is b(s) = (s+1)(6s + 5)(6s + 7), possible poles of f2 are -1 —v, —=5/6 —v, —6/7 —v
with v € N and they are at most simple poles. The residue Resy—_1f f; is a solution of

Dy /(D2(220, + 3ydy, + 6) + Da(2yd, + 3229,) + Da(z® — ).

Res)—_5/6f j> is a solution of Dy /(Dyx+Doy). Hence it is a constant multiple of the delta
function 8(z,y) = 6(x)d(y). Resy=_7/6f2 is asolution of Dy /(Dax?+ D (29,+2)+D-y).
Hence it is a constant multiple of ¢’ (x)d(y).

Example 3.9. Set f = 23—y? and o(z,y) = exp(—22—y?). Then ¢ is a solution
of a holonomic system M := Ds/(D2(0,+2z)+ D2 (8, +2y)) on R?, which is f-saturated
since it is a simple Do-module. The generalized b-function for f and u := [1] € M is
br(s) = (s+ 1)(6s + 5)(6s + 7). The local zeta function Z(\) = [, fRedady is
annihilated by the difference operator

32F 4+ 16(4s + 13)E? — 4(s + 3)(27s* + 1545 + 211) E?
—6(s+2)(s+3)(365% + 1625 + 173)Ey — 3(s + 1)(s + 2)(s + 3) (65 + 5) (65 + 13),

where s is an indeterminate corresponding to A. From this we see that —7/6 is not a
pole of Z(\).

Example 3.10. Set ¢(z) = exp(—z — 1/x) for z > 0 and ¢(z) = 0 for < 0.
Then ¢(z) belongs to the space S(R) of rapidly decreasing functions on R and satisfies
a holonomic system

M := Dy/D; (220, + z* — 1),

which is x-saturated. The generalized b-function for f = z and u = [1] € M is s + 1.
The local zeta function Z(\) := [, 23 ¢(2) dx is entire (i.e., without poles) and satisfies
a difference equation

(B} —(A+2)Ex —1)Z()) = 0.

This can also be deduced by integration by parts.

Example 3.11.  Set ¢p1(z) = exp(—x — 1/z) for x > 0 and ¢ (z) =0 for z < 0.
Set o(x,y) = p1(z)e” Y. Then ¢ satisfies a holonomic system

M := Dy/(Da(2%0, + 2> — 1) + D3(9, + 1)).
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The generalized b-function for f := y3 — 22 and u = [1] € M is s + 1. Moreover, we
can confirm that M is f-saturated by using the localization algorithm in [7]. The local
zeta function Z(\) == [o. fj}go dxdy is well-defined since f(z,y) < 0 if y < 0. It is
annihilated by a difference operator of the form

EM +aio(s)EX + -+ ai(s)Es + ao(s),
ao(s) = (s +1)(s +2)(s +3)(s +4)(s + 5)(s + 6)(s + 7)(s + 8)(s +9),

where c¢ is a positive rational number and a4 (s),...,a10(s) are polynomials of s with
rational coefficients. Possible poles of figo are the negative integers. For example, —1
is at most a simple pole of f j:gp and Resy—_1f igp is a solution of a holonomic system

Dy /(D2 (3220, + 22y, + 3z% + (2y + 6)x — 3) + Da(y* — 2?)).

Example 3.12.  Set f = 23 — y?22. The b-function of f is (s + 1)(3s +4)(3s +
5)(6s +5)?(6s + 7)2. For example, its maximum root —5/6 is at most a pole of order 2
of . Let

2= (/\+g)_2<,0_2+ <A+g>_1¢_1+¢0+...

be the Laurent expansion. Then ¢_5 satisfies

TP_o =Yyp_o=2p_o3=0.

Hence ¢_ is a constant multiple of §(z,y). On the other hand, ¢_; satisfies a holonomic

system
wp_1 = (ydy — 20.)p1 = yzp_1 = (229, — 2)p_1 = 0.
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