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Abstract

Let f be a real polynomial of x = (x1, . . . , xn) and φ be a locally integrable function of x

which satisfies a holonomic system of linear differential equations. We study the distribution

fλ
+φ with a meromorphic parameter λ, especially its Laurent expansion and integration, from

an algorithmic viewpoint in the framework of D-module theory.

§ 1. Introduction

Let f be a non-constant real polynomial in x = (x1, . . . , xn) and φ be a locally

integrable function on an open subset U of Rn. Then φ can be regarded as a distribution

(generalized function in the sense of L. Schwartz) on U . We assume that there exists

a left ideal I of the ring Dn of differential operators with polynomial coefficients in x

which annihilates φ on Uf := {x ∈ U | f(x) ̸= 0}, i.e., Pφ vanishes on Uf for any P ∈ I.

Moreover, we assume that M := Dn/I is a holonomic Dn-module. In this situation, φ

is called a (locally integrable) holonomic function or a holonomic distribution.

Let us consider the distribution fλ+φ on U with a holomorphic parameter λ. This

distribution can be analytically extended to a distribution-valued meromorphic function

of λ on the complex plane C. Such a distribution was systematically studied by Kashi-

wara and Kawai in [2] with f being, more generally, a real-valued real analytic function.

Their investigation was focused on a special case where M has regular singularities but

most of the arguments work without this assumption.
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The main purpose of this article is to give algorithms to compute

1. A holonomic system for the distribution fλ0
+ φ with λ0 not being a pole of fλ+φ.

2. A holonomic system for each coefficient of the Laurent series of fλ+φ about an

arbitrary point.

3. Difference equations for the local zeta function Z(λ) =
∫
Rn f

λ
+φdx.

As was pointed out in [2], an answer to the first problem provides us with an algorithm to

compute a holonomic system for the product of two locally L2 holonomic functions. Note

that the product does not necessarily satisfies the tensor product of the two holonomic

systems for both functions.

In Section 2, we review the theoretical properties of fλ+φmostly following Kashiwara

[1] and Kashiwara and Kawai [2] in the analytic category; i.e, under a weaker assumption

that f is a real-valued real analytic function and that φ satisfies a holonomic system of

linear differential equations with analytic coefficients.

In Section 3, we give algorithms to computes holonomic systems considered in

Section 2. As a byproduct, we obtain an algorithm to compute difference equations for

the local zeta function, which was outlined in [4].

§ 2. Theoretical background

Let DCn be the sheaf on Cn of linear partial differential operators with holomorphic

coefficients, which is generated by the derivations ∂j = ∂xj = ∂/∂xj (j = 1, . . . , n) over

the sheaf OCn of rings of holomorphic functions on Cn, with the coordinate system

x = (x1, . . . , xn) of Cn.

We denote by Db the sheaf on Rn of the Schwartz distributions. Assume that

f = f(x) is a nonzero real-valued real analytic function defined on an open connected

set U of Rn. Let φ be a locally integrable function on U . Then fλ+φ is also locally

integrable on U for any λ ∈ C with Re λ ≥ 0, where f+(x) = max{f(x), 0}.
Let M be a holonomic DCn-module defined on an open set Ω of Cn such that

U ⊂ Ω ∩ Rn. We also assume that f is holomorphic on Ω. We say that a distribution

φ is a solution of M on U if there exist a section u of M on U and a DCn -linear

homomorphism Φ : DCnu→ Db defined on U such that Φ(u) = φ. As a matter of fact,

we have only to assume that φ is a solution of M on Uf := {x ∈ U | f(x) ̸= 0} and

that M is holonomic on Ωf := {x ∈ Ω | f(x) ̸= 0}.

§ 2.1. Fundamental lemmas

Under the assumptions above, fλ+φ is a Db(U)-valued holomorphic function of λ

on the right half-plane

C+ := {λ ∈ C | Re λ > 0}.
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In other words, let ODb be the sheaf on C × Rn ∋ (λ, x) of distributions with a holo-

morphic parameter λ. Then fλ+φ belongs to

ODb(C+ × U) =
{
v(λ, x) ∈ Db(C+ × U) | ∂v

∂λ
= 0

}
.

Let s be an indeterminate corresponding to λ. The following lemma (Lemma 2.9 of [2])

plays an essential role in the following arguments.

Lemma 2.1 (Kashiwara-Kawai [2]). Let Ω′ be an open set of Cn such that V :=

Rn∩Ω′ is non-empty and contained in U . Assume P (s) ∈ DCn(Ω′)[s] and P (λ)(fλ+φ) =

0 holds in ODb(C+ × Vf ) with Vf := {x ∈ V | f(x) ̸= 0}. Then P (λ)(fλ+φ) = 0 holds

in ODb(C+ × V ).

Let us generalize this lemma slightly. For a positive integer m, let us define a

section fλ+(log f+)
mφ of the sheaf ODb on C+ × U by

⟨fλ+(log f+)mφ,ψ⟩ =
∫
{x∈U |f(x)>0}

φ(x)f(x)λ(log f(x))mφ(x)ψ(x) dx (∀ψ ∈ C∞
0 (U)),

where C∞
0 (U) denotes the space of C∞ functions on U with compact supports. In fact,

fλ+(log f+)
mφ is the m-th derivative of the distribution fλ+φ with respect to λ.

Lemma 2.2. Let Ω′ be an open set of Cn such that V := Rn ∩Ω′ is non-empty

and contained in U . Let φ0, . . . , φm be locally integrable functions on V . Assume

Pk(s) ∈ DCn(Ω′)[s] (k = 0, 1, . . . ,m) and

(2.1)
m∑

k=0

Pk(λ)(f
λ
+(log f+)

kφk) = 0

holds in ODb(C+ × Vf ). Then (2.1) holds in ODb(C+ × V ).

Proof. We follow the argument of the proof of Lemma 2.9 in [2]. Let ϕ belong to

C∞
0 (V ) with K := suppϕ. Let χ(t) be a C∞ function of a variable t such that χ(t) = 1

for |t| ≤ 1/2 and χ(t) = 0 for |t| ≥ 1. Then we have⟨
m∑

k=0

Pk(λ)(f
λ
+(log f+)

kφk), ϕ

⟩
=

⟨
m∑

k=0

Pk(λ)(f
λ
+(log f+)

kφk), χ
(f
τ

)
ϕ

⟩

=

m∑
k=0

∫
V

fλ+(log f+)
kφk

tPk(λ)
(
χ
(f
τ

)
ϕ
)
dx

for any τ > 0, where tPk(λ) denotes the adjoint operator of Pk(λ). Let mk be the order

of Pk(s) and dk be the degree of Pk(s) in s. Then there exist constants Ck such that

sup
x∈K

∣∣∣∣tPk(λ)
(
χ
(f(x)
τ

)
ϕ(x)

)∣∣∣∣ ≤ Ck(1 + |λ|)dkτ−mk (0 < ∀τ < 1).
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Assume Re λ > max{mk + 1 | 0 ≤ k ≤ m} and 0 < τ < 1. Then we have∣∣∣∣∫
V

fλ+(log f+)
kφk

tPk(λ)
(
χ
(f
τ

)
ϕ
)
dx

∣∣∣∣
≤ Ck(1 + |λ|)dkτ−mk

∫
{x∈V |0<f(x)≤τ}

|fλ+(log f+)kφk(x)| dx

≤ k!Ck(1 + |λ|)dkτRe λ−mk−1

∫
{x∈V |0<f(x)≤τ}

|φk(x)| dx

since | log t|k ≤ k!t−1 holds for 0 < t < 1. This implies⟨
m∑

k=0

Pk(λ)(f
λ
+(log f+)

kφk), ϕ

⟩
= lim

τ→+0

m∑
k=0

∫
V

fλ+(log f+)
kφk

tPk(λ)
(
χ
(f
τ

)
ϕ
)
dx = 0.

The assertion of the lemma follows from the uniqueness of analytic continuation.

§ 2.2. Generalized b-function and analytic continuation

We assume that there exists on Ω a sheaf I of coherent left ideals of DCn which

annihilates φ on Uf = {x ∈ U | f(x) ̸= 0}, namely, Pφ = 0 holds on W ∩ Uf for

any section P of I on an open set W of Cn. We set M = DCn/I and denote by u

the residue class of 1 ∈ DX modulo I. In the sequel, we assume that M is holonomic

on Ωf = {z ∈ Ω | f(z) ̸= 0}, i.e., that Char(M) ∩ π−1(Ωf ) is of dimension n, where

Char(M) denotes the characteristic variety of M and π : T ∗Cn → Cn is the canonical

projection.

Let L = OCn [f−1, s]fs be the free OCn [f−1, s]-module generated by the symbol

fs. Then L has a natural structure of left DCn [s]-module induced by the derivation

∂if
s = s(∂f/∂xi)f

−1fs. Let us consider the tensor product L⊗OCn M of OCn -modules,

which has a natural structure of left DCn [s]-module.

Lemma 2.3. Let v and P (s) be sections of M and of DCn [s] respectively on

an open subset of Ω. Then P (s)(fs ⊗ v) = 0 holds in L ⊗OCn M if and only if

(fm−sP (s)fs)(1⊗ v) = 0 holds in C[s]⊗C M for a sufficiently large m ∈ N.

Proof. Set M[s] = C[s]⊗C M, which has a natural structure of left module over

C[s]⊗CDCn = DCn [s]. Then we have L⊗OCn M = L⊗OCn [s]M[s] as left DCn [s]-module.

Let v be a section ofM[s]. Since L is isomorphic to OCn [f−1, s] as OCn [s]-module, fs⊗v
vanishes in L⊗OCn [s]M[s] if and only if 1⊗v vanishes in OCn [f−1, s]⊗OCn [s]M[s]. First,

let us show that this happens if and only if fmv = 0 in M[s] with some m ∈ N.
Let ρ : OCn [s, t] → OCn [s, f−1] be the homomorphism defined by ρ(h(s, t)) =

h(s, f−1) for h(s, t) ∈ OCn [s, t]. Let K be the kernel of ρ. Then we have an exact

sequence

K ⊗OCn [s] M[s] −→ OCn [s, t]⊗OCn [s] M[s]
ρ⊗id−→ OCn [s, f−1]⊗OCn [s] M[s] −→ 0.
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Hence 1 ⊗ v vanishes in OCn [s, f−1] ⊗OCn [s] M[s] if and only if there exists h(s, t) =∑m
k=0 hk(s)t

k ∈ K such that 1⊗ v = h(s, t)⊗ v holds in OCn [s, t]⊗OCn [s] M[s], which is

equivalent to hk(s)v = δ0kv (k = 0, 1, . . . ,m) since OCn [s, t] is free over OCn [s]. On the

other hand,
∑m

k=0 hk(s)f
−k = ρ(h(s, t)) = 0 implies

0 = fmh0(s)v + fm−1h1(s)v + · · ·+ fhm−1(s)v + hm(s)v = fmv.

Conversely, if fmv = 0 for some m ∈ N, then we have 1 ⊗ v = f−m ⊗ fmv = 0 in

OCn [s, f−1]⊗OCn [s] M.

Let P (s) be a section of DCn [s] of order m. For i = 1, . . . , n,

∂i(f
s ⊗ v) = fs−1 ⊗ (sfi + f∂i)v = fs−1 ⊗ (f1−s∂if

s)v

holds in L ⊗OCn [s] M[s] with fi = ∂f/∂xi. This allows us to show that

P (s)(fs ⊗ v) = fs−m ⊗ (fm−sP (s)fs)v

holds in L ⊗OCn [s] M[s]. (Note that fm−sP (s)fs belongs to DCn [s].) Summing up, we

have shown that P (s)(fs ⊗ v) vanishes in L ⊗OCn [s] M[s] if and only if (f l−sP (s)fs)v

vanishes in M[s] for some l ≥ m.

Lemma 2.3 with P (s) = 1 immediately implies

Proposition 2.4. Let M[f−1] := OCn [f−1] ⊗OCn M be the localization of M
with respect to f , which has a natural structure of left DCn-module. Then the natural

homomorphism L ⊗OCn M → L⊗OCn M[f−1] is an isomorphism.

Proposition 2.5. Let P (s) be a section of DCn [s] on an open set Ω′ of Cn and

suppose P (s)(fs ⊗ u) = 0 in L ⊗OCn M. Set V = U ∩ Ω′. Then P (λ)(fλ+φ) = 0 holds

in ODb(C+ × V ).

Proof. Let O+∞Db be the sheaf on Rn associated with the presheaf

W 7−→ lim
−→

ODb({λ ∈ C | Re λ > a} ×W )

for every open setW of Rn, where the inductive limit is taken as a→ ∞. The C-bilinear
sheaf homomorphism

L ×M ∋ (a(s)fs−m, Pu) 7−→ (a(λ)fλ−m
+ )Pφ ∈ O+∞Db

with a(s) ∈ OX [s], m ∈ N, P ∈ DX , which is well-defined and OCn-balanced on Vf

since fλ−m
+ is real analytic there, induces a DCn -linear homomorphism

Ψ : L ⊗OCn M −→ O+∞Db
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on Vf such that Ψ(a(s)fs−m ⊗ Pu) = a(λ)fλ−m
+ Pφ. In particular, if P (s) ∈ DCn [s]

satisfies P (s)(fs ⊗ u) = 0 in L ⊗OCn M, then P (λ)(fλ+φ) = 0 holds in O+∞Db(Vf ),
hence also in O+∞Db(V ) by Lemma 2.1. Since fλ+φ belongs to ODb(C+×V ), it follows

that P (fλ+φ) = 0 holds in ODb(C+ × V ). This completes the proof.

Kashiwara proved in [1] (Theorem 2.7) that on a neighborhood of each point p of

Ω, there exist nonzero b(s) ∈ C[s] and P (s) ∈ DCn [s] such that

P (s)(fs+1 ⊗ u) = b(s)fs ⊗ u in L ⊗OCn M.

Such b(s) of the smallest degree b(s) = bp(s) is called the (generalized) b-function for f

and u at p.

Assume p ∈ U . Then by the proposition above,

P (λ)(fλ+1
+ φ) = b(λ)fλ+φ

holds in ODb(C+ × V ) with an open neighborhood V of p. It follows that fλ+φ is a

Db(V )-valued meromorphic function of λ on C. Let us assume that U is relatively

compact in Ω. The poles of fλ+φ are contained in

{λ− k | bp(λ) = 0 (∃p ∈ U), k ∈ N}.

Proposition 2.6 (Lemma 2.10 of [2]). There exists a positive real number ε such

that fλ+φ belongs to ODb({λ ∈ C | Re λ > −ε} × U).

Proof. Let λ0 be an arbitrary pole of fλ+φ. There exists ψ ∈ C∞
0 (U) such that λ0

is a pole of Z(λ) := ⟨fλ+φ,ψ⟩. In particular, |Z(λ0 + t)| tends to infinity as t → +0.

On the other hand, Z(λ) is continuous on {λ ∈ C | Re λ ≥ 0}. This implies Re λ0 < 0.

The conclusion follows since there are at most a finite number of poles of fλ+φ in the

set {λ ∈ C|Re λ > −1}.

In conclusion, fλ+φ is a Db(U)-valued meromorphic function on C whose poles are

contained in {λ ∈ C | Re λ < 0}.

§ 2.3. Holonomicity of fλ+φ and its applications

Let f , φ, M = DCn/I be as in the preceding subsection. Let N = DCn [s](fs⊗u) be
the left DCn [s]-submodule of L⊗OCn M generated by fs⊗u. Theorem 2.5 of Kashiwara

[1] guarantees that Nλ0
:= N/(s − λ0)N is a holonomic DCn -module on Ω for any

λ0 ∈ C.

Proposition 2.7. Let λ0 be an arbitrary complex number and fλ0⊗φ the residue

class of fs ⊗ u ∈ N modulo (s− λ0)N .
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1. N0 is isomorphic to M as DCn-module on Ωf .

2. If M is f -saturated, i.e., if fv = 0 with v ∈ M implies v = 0, then there is

a surjective DCn-homomorphism Φ : N0 → M on Ω such that Φ(f0 ⊗ u) = u.

Moreover, Φ is an isomorphism on Ωf .

Proof. Since M[f−1] = M on Ωf , we may assume that M is f -saturated. In view

of Lemma 2.3 and the definition of N0, P ∈ DCn annihilates f0 ⊗ u if and only if there

exist Q(s) ∈ DCn [s] and an integer m ≥ ordQ(s) such that (fm−sQ(s)fs)(1 ⊗ u) = 0

in M[s] and P = Q(0). If there exist such Q(s) and m, set

fm−sQ(s)fs = Q0 +Q1s+ · · ·+Qls
l (Qi ∈ DCn).

Then Qiu = 0 holds for any i. In particular, Q0 = fmP annihilates u. This implies

Pu = 0 since M is f -saturated. Hence the homomorphism Φ is well-defined.

Now assume p ∈ Ωf and Pu = 0 in the stalk Mp of M at p. Then Q(s) := fsPf−s

belongs to DCn,p[s] and annihilates fs ⊗ u by Lemma 2.3. Hence P = Q(0) annihilates

f0 ⊗ u. This implies that Φ is an isomorphism on Ωf .

Theorem 2.8. If λ0 is not a pole of fλ+φ, then f
λ0
+ φ is a solution of Nλ0

.

Proof. Assume that λ0 ∈ C is not a pole of fλ+φ. Let P be a section of DCn which

annihilates fλ0 ⊗ u. Then there exist Q(s), R(s) ∈ DCn [s] such that

P = Q(s) + (s− λ0)R(s), Q(s)(fs ⊗ u) = 0 in N .

Proposition 2.5 implies that Q(λ)(fλ+φ) vanishes as section of the sheaf ODb. In par-

ticular, P (fλ0
+ φ) = Q(λ0)(f

λ0
+ φ) = 0 holds as distribution. Thus the homomorphism

Nλ0
= DCn(fλ0 ⊗ u) ∋ P (fλ0 ⊗ u) 7−→ P (fλ0

+ φ) ∈ Db

is well-defined and DCn -linear. Hence fλ0
+ φ is a solution of Nλ0 .

The following two theorems are essentially due to Kashiwara and Kawai [2] although

they are stated with additional assumptions and stronger results.

Theorem 2.9. φ is a solution of the holonomic DCn-module N0.

Proof. First note that OCn [f−1, s](−f)s is isomorphic to OCn [f−1, s]fs as left

DCn [s]-module since ∂i(−f)s = sfif
−1(−f)s holds in OCn [f−1, s](−f)s with fi =

∂f/∂xi. Assume that P (f0 ⊗ u) = 0 holds in N0 = N/sN . Then there exist

Q(s), R(s) ∈ DCn [s] such that

P = Q(s) + sR(s), Q(s)(fs ⊗ u) = 0 in N .
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Let θ(t) be the Heaviside function; i.e., θ(t) = 1 for t > 0 and θ(t) = 0 for t ≤ 0. Then

we have θ(f) = f0+ and θ(−f) = (−f)0+. Theorem 2.8 implies that P = Q(0) annihilates

both θ(f)φ and θ(−f)φ, and hence also φ = θ(f)φ + θ(−f)φ. Thus φ is a solution of

N0.

Theorem 2.10. Let φ1 and φ2 be locally Lp and Lq functions respectively on

an open set U ⊂ Rn with 1 ≤ p, q ≤ ∞ and 1/p+ 1/q = 1. Assume that φ1 and φ2 are

solutions of holonomic DCn-modules M1 and M2 respectively on U . Then for any point

x0 of U , there exists a holonomic DCn-module M on a neighborhood of x0 of which the

product φ1φ2 is a solution.

Proof. There exist analytic functions f1 and f2 on a neighborhood V of x0 such

that the singular support (the projection of the characteristic variety minus the zero

section) of Mk is contained in fk = 0 for k = 1, 2. Set f(z) = f1(z)f1(z)f2(z)f2(z).

Then f(x) is a real-valued real analytic function and φ1 and φ2 are real analytic on Vf .

Then it is easy to see, in the same way as in the proof of Theorem 2.8, that φ1φ2 is a

solution of M1⊗OCn M2 on Vf . To complete the proof, we have only to apply Theorem

2.9 to M1 ⊗OCn M2 and φ1φ2 in place of M and φ respectively.

§ 2.4. Laurent coefficients of fλ+φ

Let f , φ, M be as in preceding subsections.

Theorem 2.11. Let p be a point of U . Then each coefficient of the Laurent

expansion of fλ+φ about an arbitrary λ0 ∈ C is a solution of a holonomic DCn-module

on a common neighborhood of p.

Proof. Fix m ∈ N such that Re λ0 + m ≥ 0. By using the functional equation

involving the generalized b-function, we can find a nonzero b(s) ∈ C[s] and a germ P (s)

of DCn [s] at p such that

b(λ)fλ+φ = P (λ)(fλ+m
+ φ).

Factor b(s) as b(s) = (s− λ0)
lc(s) with c(s) ∈ C[s] such that c(λ0) ̸= 0 and an integer

l ≥ 0. Then we have

(λ− λ0)
lfλ+φ =

1

c(λ)
P (λ)(fλ+m

+ φ).

The right-hand side is holomorphic in λ on an neighborhood of λ = λ0. Let

fλ+φ =
∞∑

k=−l

(λ− λ0)
kφk
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be the Laurent expansion with φk ∈ Db(U), which is given by

φk =
1

(l + k)!
lim

λ→λ0

∂l+k

∂λl+k

(
(λ− λ0)

lfλ+φ
)
=

1

(l + k)!
lim

λ→λ0

∂l+k

∂λl+k

(
1

c(λ)
P (λ)(fλ+m

+ φ)

)
.

Hence there exist Qkj ∈ DCn such that

(2.2) φk =
l+k∑
j=0

Qkj(f
λ0+m
+ (log f+)

jφ).

First let us show that fλ0+m
+ (log f+)

jφ with 0 ≤ j ≤ k satisfy a holonomic system.

Consider the free OCn [s, f−1]-module

L̃ := OCn [s, f−1]fs ⊕OCn [s, f−1]fs log f ⊕OCn [s, f−1]fs(log f)2 ⊕ · · · ,

which has a natural structure of left DCn [s]-module. Let

N [k] := DCn [s](fs ⊗ u) +DCn [s]((fs log f)⊗ u) + · · ·+DCn [s]((fs(log f)k)⊗ u)

be the left DCn [s]-submodule of L̃ ⊗OCn M generated by (fs(log f)j) ⊗ u with j =

0, 1, . . . , k. It is easy to see that N [k]/N [k − 1] is isomorphic to N = N [0] as left

DCn [s]-module since

P (s)((fs(log f)k)⊗ u) ≡ (fs−m(log f)k)⊗ (fm−sP (s)fs)u mod N [k − 1]

holds for any P (s) ∈ DCn [s] with m = ordP (s). Moreover, Nλ0
[k] := N [k]/(s−λ0)N [k]

is a holonomic DCn -module since Nλ0 [k]/Nλ0 [k− 1] is isomorphic to Nλ0 = Nλ0 [0], and

hence is holonomic as left DCn-module.

Let (fλ0+m(log f)j)⊗u ∈ Nλ0+m[k] be the residue class of (fs(log f)j)⊗u modulo

(s − λ0 −m)N [k]. Suppose
∑k

j=0 Pj((f
λ0+m(log f)j) ⊗ u) vanishes in Nλ0+m[k] with

Pj being a section of DCn on an open neighborhood of a point p of U . Then there exist

Qj(s) ∈ DCn [s] such that

k∑
j=0

Pj((f
s(log f)j)⊗ u) = (s− λ0 −m)

k∑
j=0

Qj(s)((f
s(log f)j)⊗ u)

holds in N [k]. Then it is easy to see that

(2.3)
k∑

j=0

Pj(λ)(f
λ
+(log f+)

jφ) = (λ− λ0 −m)
k∑

j=0

Qj(λ)(f
λ
+(log f+)

jφ)

holds in ODb(C+ ×Wf ) with an open neighborhood W of p. Lemma 2.2 and analytic

continuation imply that (2.3) holds in ODb(C+ ×W ). By Proposition 2.6, we have in

Db(W )
k∑

j=0

Pj((f
λ0+m
+ (log f+)

j)φ) = 0.
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In conclusion, with k replaced by l + k, there exists a DCn -homomorphism Φ :

Nλ0+m[l + k] → Db such that

Φ((fλ0+m(log f)j)⊗ u) = fλ0+m
+ (log f+)

jφ (0 ≤ j ≤ l + k).

Set

w :=

l+k∑
j=0

Qkj((f
λ0+m(log f)j)⊗ u), Mk := DCnw.

Then Mk is a DCn-submodule of Nλ0+m[l+ k] and hence holonomic. Since Φ(w) = φk

in view of (2.2), φk is a solution of Mk. This completes the proof.

§ 3. Algorithms

We give algorithms for computing holonomic systems introduced in the previ-

ous section assuming that f is a real polynomial and that M is algebraic, i.e., de-

fined by differential operators with polynomial coefficients. Let Dn := C⟨x, ∂⟩ =

C⟨x1, . . . , xn, ∂1, . . . , ∂n⟩ be the ring of differential operators with polynomial coeffi-

cients with ∂j = ∂/∂xj . The ring Dn is also called the n-th Weyl algebra over C.
In the sequel, let f be a non-constant real polynomial of x = (x1, . . . , xn) and φ

be a locally integrable function on an open connected set U of Rn. We assume that

there exists a left ideal I of Dn which annihilates φ on Uf , i.e., Pφ = 0 holds on Uf

for any P ∈ I, such that M := Dn/I is a holonomic Dn-module. We denote by u

the residue class of 1 ∈ Dn modulo I. Let L = C[x, f−1, s]fs be the free C[x, f−1, s]-

module generated by fs, which has a natural structure of left Dn[s]-module. Let N :=

Dn[s](f
s ⊗ u) be the left Dn-submodule of L⊗C[x] M generated by fs ⊗ u.

As was established in the previous section, fλ+φ is a Db(U)-valued meromorphic

function on C and is a solution of N .

§ 3.1. Mellin transform

Let us assume that φ is real analytic on Uf and set

φ̃(x, λ) :=

∫ ∞

−∞
tλ+δ(t− f(x))φ(x) dt.

This is well-defined and coincides with fλ+φ as a distribution on Uf ×C+. Then we have∫ ∞

−∞
tλ+tδ(t− f(x))φ(x) dt = φ̃(x, λ+ 1),∫ ∞

−∞
tλ+∂t(δ(t− f(x))φ(x)) dt = −

∫ ∞

−∞
∂t(t

λ
+)δ(t− f(x))φ(x) dt = −λφ̃(x, λ− 1).
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Let Dn+1 = Dn⟨t, ∂t⟩ be the (n + 1)-th Weyl algebra with ∂t = ∂/∂t. Let us consider

the ring Dn⟨s,Es, E
−1
s ⟩ of difference-differential operators with the shift operator Es :

s 7→ s + 1, where s is an indeterminate corresponding to λ. In view of the identities

above, let us define the ring homomorphism (Mellin transform of operators)

µ : Dn+1 −→ Dn⟨s,Es, E
−1
s ⟩

by

µ(t) = Es, µ(∂t) = −sE−1
s , µ(xj) = xj , µ(∂xj ) = ∂xj .

It is easy to see that µ is well-defined and injective since [∂t, t] = [µ(∂t), µ(t)] = 1. Hence

we may regard Dn+1 as a subring of Dn⟨s,Es, E
−1
s ⟩. Since µ(∂tt) = −s, we can also

regard Dn[s] as a subring of Dn+1. Thus we have inclusions

Dn[s] ⊂ Dn+1 ⊂ Dn⟨s,Es, E
−1
s ⟩

of rings and L ⊗C[x] M has a structure of left Dn⟨s,Es, E
−1
s ⟩-module compatible with

that of left Dn[s]-module. Let F(U) be the C-vector space of the Db(U)-valued mero-

morphic functions on C. Then F(U) has a natural structure of left Dn⟨s,Es, E
−1
s ⟩-

module, which is compatible with that of Dn[s]-module. In particular, we can regard

F(U) as a left Dn+1-module.

§ 3.2. Computation of N = Dn[s](f
s ⊗ u)

The inclusionDn+1f
s ⊂ L = C[x, f−1, s]fs induces a naturalDn+1-homomorphism

Dn+1f
s ⊗C[x] M

ι−−−−→ L⊗C[x] M

∪ ∪

N ′ ι′−−−−→ N

where N ′ is the left Dn[s]-submodule of Dn+1f
s ⊗C[x] M generated by fs ⊗ u and N

is the left Dn[s]-submodule of L ⊗C[x] M generated by fs ⊗ u. The homomorphism ι

induces a surjective Dn[s]-homomorphism ι′ : N ′ → N .

Proposition 3.1. The homomorphism ι is injective if and only if M is f -

saturated; i.e., the homomorphism f :M →M is injective.

Proof. First note that Dn+1f
s is isomorphic to the first local cohomology group

C[x, t, (t−f)−1]/C[x, t] of C[x, t] supported in the non-singular hypersurface t−f(x) = 0

since

(t− f)fs = 0, (∂xi + fi∂t)f
s = 0 (i = 1, . . . , n).
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In particular, Dn+1f
s is a free C[x]-module generated by ∂jt f

s with j ≥ 0. Hence an

arbitrary element w of Dn+1f
s ⊗C[x] M is uniquely written in the form

w =
k∑

j=0

(∂jt f
s)⊗ uj

with uj ∈M and k ∈ N. Then

ι(w) =
k∑

j=0

(−1)js(s− 1) · · · (s− j + 1)fs−j ⊗ uj

vanishes if and only if fs−j ⊗ uj = 0, which is equivalent to fmjuj = 0 with some

mj ∈ N by Lemma 2.3, for all j = 0, 1, . . . , k. This completes the proof.

Let M̃ be the left Dn-submodule of the localization M [f−1] := C[x, f−1] ⊗C[x] M

which is generated by 1⊗ u. Then M̃ is f -saturated and the natural homomorphism

L⊗C[x] M −→ L⊗C[x] M̃

is an isomorphism by Lemma 2.3.

An algorithm to compute M [f−1] was presented in [7] under the assumption that

M is holonomic on Cn \ {f = 0}. It provides us with an algorithm to compute M̃ , i.e.,

the annihilator of 1 ⊗ u ∈ M [f−1]. Hence we may assume, from the beginning, that

M is holonomic and f -saturated. Then ι′ : N ′ → N is an isomorphism by Proposition

3.1. The f -saturatedness is equivalent to the vanishing of the zeroth local cohomology

group of M with support in f = 0, which can be computed by algorithms presented in

[3],[8],[6].

Thus we have only to give an algorithm to compute the structure of N ′ assuming

M to be f -saturated. We follow an argument introduced by Walther [8]. Note that we

gave in [3] an algorithm based on tensor product computation which is less efficient.

Definition 3.2. For a differential operator P = P (x, ∂) ∈ Dn, set

τ(P ) := P (x, ∂x1 + f1∂t, . . . , ∂xn + fn∂t) ∈ Dn+1

with fj = ∂f/∂xj . This substitution is well-defined since the operators ∂xj
+ fj∂t

commute with one another and [∂xj + fj∂t, xi] = δij holds.

Moreover, for a left ideal I of Dn+1, let τ(I) be the left ideal of Dn+1 which is

generated by the set {τ(P ) | P ∈ I}.

Lemma 3.3. τ(P )(fs ⊗ v) = fs ⊗ (Pv) holds in L⊗C[x]M for any P ∈ Dn and

v ∈M .
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Proof. By the definition of the action of Dn+1 on L⊗C[x]M via the Mellin trans-

form, we have

(∂xj
+ fj∂t)(f

s ⊗ v) = sf−1fjf
s ⊗ v + fs ⊗ (∂xj

v)− sfjf
−1fs ⊗ v = fs ⊗ (∂xj

v).

This implies the conclusion of the lemma.

Proposition 3.4. Let I be a left ideal of Dn and set M = Dn/I with u ∈ M

being the residue class of 1 modulo I. Let J be the left ideal of Dn+1 which is generated

by τ(I)∪{t−f(x)}. Then J coincides with the annihilator AnnDn+1(f
s⊗u) of fs⊗u ∈

Dn+1f
s ⊗C[x] M .

Proof. We have only to show that for P ∈ Dn+1 the equivalence

P ∈ J ⇔ P (fs ⊗ u) = 0 in Dn+1f
s ⊗C[x] M.

Suppose Q belongs to J . Then P annihilates fs ⊗ u by Lemma 3.3.

Conversely, suppose P (fs ⊗ u) = 0 in Dn+1f
s ⊗C[x] M . We can rewrite P in the

form

P =
∑

α∈Nn,ν∈N

pα,ν(x)∂
ν
t

(
∂x1

+
∂f

∂x1
∂t

)α1

· · ·
(
∂xn

+
∂f

∂xn
∂t

)αn

+Q · (t− f(x))

with pα,ν(x) ∈ C[x] and Q ∈ Dn+1. Setting Pν :=
∑

α∈Nn pα,ν(x)∂
α
x , we get

0 = P (fs ⊗ u) =
∞∑
ν=0

(∂νt f
s)⊗ Pνu ∈ Dn+1f

s ⊗C[x] M.

It follows that each Pν belongs to I since {∂νt fs} constitutes a free basis of Dn+1f
s over

C[x]. Hence we have

P =
∞∑
ν=1

∂νt τ(Pν) +Q · (t− f(x)) ∈ J.

This completes the proof.

In order to compute the structure of the Dn[s]-submodule N ′ = Dn[s](f
s ⊗ u) of

Dn+1f
s ⊗C[x] M , we have only to compute the annihilator

AnnDn[s](f
s ⊗ u) = Dn[s] ∩ J,

where we regard Dn[s] as a subring of Dn+1. This can be done as follows:

Introducing new variables σ and τ , for P ∈ Dn+1, let h(P ) ∈ Dn+1[τ ] be the

homogenization of P with respect to the weights
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xj ∂xj t ∂t τ σ

0 0 −1 1 −1 1

Let J ′ be the left ideal of Dn+1[σ, τ ] generated by

{h(P ) | P ∈ G̃} ∪ {1− στ},

where G̃ is a set of generators of J .

Set J ′′ = J ′ ∩Dn+1. Since each element P of J ′′ is homogeneous with respect to

the above weights, there exists P ′(s) ∈ Dn[s] such that P = SP ′(−∂tt) with S = tν

or S = ∂νt with some integer ν ≥ 0. We set P ′(s) = ψ(P )(s). Then {ψ(P ) | P ∈ J ′′}
generates the left ideal J ∩ Dn[s] of Dn[s]. This procedure can be done by using a

Gröbner basis in Dn+1[σ, τ ]. In conclusion, we have a set of generators of J ∩ Dn[s].

Then N ′, and hence N also if M is f -saturated, is isomorphic to Dn[s]/(J ∩Dn[s]) as

left Dn[s]-module.

The generalized b-function for f and u can be computed as the generator of the

ideal

C[s] ∩ (AnnDn[s]f
s ⊗ u+Dn[s]f)

of C[s] by elimination via Gröbner basis computation in Dn[s].

§ 3.3. Holonomic systems for the Laurent coefficients of fλ+φ

Let λ0 be an arbitrary complex number. Our purpose is to compute a holonomic

system of which each coefficient of the Laurent expansion of fλ+φ is a solution.

Let b0(s) be the (global) b-function of f and u. We can find a P0(s) ∈ Dn[s] such

that

P0(s)(f
s+1 ⊗ u) = b0(s)f

s ⊗ u

holds in N by, e.g., syzygy computation. Take m ∈ N such that Re λ0 + m ≥ 0 or

b0(λ0 +m+ k) ̸= 0 (∀k ∈ N). Then λ0 +m is not a pole of fλ+φ.

We can find a nonzero polynomial b(s) and P (s) ∈ Dn[s] such that

b(λ)fλ+ = P (λ)fλ+m
+ .

In fact, we have only to set

P (s) := P0(s)P0(s+ 1) · · ·P0(s+m− 1), b(s) := b0(s)b0(s+ 1) · · · b0(s+m− 1).

Factorize b(s) as b(s) = c(s)(s−λ0)l with c(λ0) ̸= 0. Then fλ+φ has a Laurent expansion

of the form

fλ+φ =
∞∑

k=−l

(λ− λ0)
kφk



Operational calculus for holonomic distributions 15

around λ0, where φk ∈ Db(U) is given by

φk =
1

(l + k)!
lim

λ→λ0

(
∂

∂λ

)l+k

(c(λ)−1P (λ)fλ+m
+ ) =

l+k∑
j=0

Qkj(f
λ0+m
+ (log f)j)

with

Qkj :=
1

j!(l + k − j)!

[(
∂

∂λ

)l+k−j

(c(λ)−1P (λ))

]
λ=λ0

.

Let

L̃ = C[x, f−1, s]fs ⊕ C[x, f−1, s]fs log f ⊕ C[x, f−1, s]fs(log f)2 ⊕ · · ·

be the free C[x, f−1, s]-module with a natural structure of left Dn⟨s, ∂s⟩-module. Con-

sider the left Dn[s]-submodule

N [k] = Dn[s](f
s ⊗ u) +Dn[s]((f

s log f)⊗ u) + · · ·+Dn[s]((f
s(log f)k)⊗ u)

of L̃⊗C[x] M . For a complex number λ0, set

Nλ0
[k] = N [k]/(s− λ0)N [k].

Let us first give an algorithm to compute the structure of N [k].

Proposition 3.5. Let G0 be a set of generators of the annihilator AnnDn[s](f
s⊗

u) = J ∩Dn[s]. Let e1 = (1, 0, . . . , 0), · · · , ek+1 = (0, . . . , 0, 1) be the canonical basis of

Zk+1. For each Q(s) ∈ G0 and an integer j with 0 ≤ j ≤ k, set

Q(j)(s) :=

j∑
i=0

(
j

i

)
∂j−iQ(s)

∂sj−i
ei+1 ∈ (Dn[s])

k+1.

Let Jk be the left Dn[s]-submodule of (Dn[s])
k+1 generated by G1 := {Q(j)(s) | Q(s) ∈

G0, 0 ≤ j ≤ k}. Then (Dn[s])
k+1/Jk is isomorphic to N [k].

Proof. Let ϖ : (Dn[s])
k+1 → N [k] be the canonical surjection. Let Q(s) belong

to G0. Differentiating the equation Q(s)(fs⊗u) = 0 in N [k] with respect to s, one gets

j∑
i=0

(
j

i

)
∂j−iQ(s)

∂sj−i
((fs(log f)i)⊗ u) = 0.

Hence Jk is contained in the kernel of ϖ. Conversely, assume that

Q⃗(s) = (Q0(s), Q1(s), . . . , Qk(s))
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belongs to the kernel of ϖ. This implies Qk(s)(f
s ⊗ u) = 0 since N [k]/N [k − 1] is

isomorphic to N = Dn[s](f
s ⊗u). Hence Q⃗(s)−Q

(k)
k (s) belongs to the kernel of ϖ, the

last component of which is zero. We conclude that Q⃗(s) belongs to Jk by induction.

Thus we have

Nλ0
[k] = (Dn)

k+1/Jk|s=λ0
, Jk|s=λ0

:= {Q(λ0) | Q(s) ∈ Jk}.

Set

w :=

l+k∑
j=0

Qkj((f
λ0+m(log f)j)⊗ u), Mk := Dnw.

Then we have

Pw = 0 ⇔ P (Qk0, Qk1, . . . , Qk,l+k) ∈ Jl+k|s=λ0+m.

Thus we can find a set of generators of AnnDn
w by computation of syzygy or intersec-

tion. As was shown in §2.4, φk is a solution of the holonomic system Mk.

§ 3.4. Difference equations for the local zeta function

In the sequel, we assume that φ is a locally integrable function on Rn. As we have

seen so far, fλ+φ ∈ F(Rn) is a solution of the holonomic Dn+1-module Dn+1/J . Hence

if the local zeta function Z(λ) :=
∫
Rn f

λ
+φdx is well-defined, e.g., if φ has compact

support, or else is smooth on Rn with all its derivatives rapidly decreasing on the set

{x ∈ Rn | f(x) ≥ 0}, then Z(λ) is a solution of the integral module

Dn+1/(J + ∂x1Dn+1 + · · ·+ ∂xnDn+1)

of Dn+1/J , which is a holonomic module over D1 = C⟨t, ∂t⟩. This D1-module can be

computed by the integration algorithm which is the ‘Fourier transform’ of the restriction

algorithm given in [6] (see [5] for the integration algorithm). Then by Mellin transform

we obtain linear difference equations for Z(λ). Thus we get

Theorem 3.6. Under the above assumptions, Z(λ) satisfies a non-trivial linear

difference equation with polynomial coefficients in λ.

Example 3.7. Γ(λ+1) =
∫∞
0
xλe−x dx =

∫∞
−∞ xλ+e

−x dx satisfies the difference

equation

(Eλ − (λ+ 1))Γ(λ+ 1) = 0,

where Eλ : λ 7→ λ+ 1 is the shift operator.
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§ 3.5. Examples

Let us present some examples computed by using algorithms introduced so far and

their implementation in the computer algebra system Risa/Asir.

Example 3.8. Set f = x3 − y2 ∈ R[x, y] and φ = 1. Since the b-function of f

is bf (s) = (s+ 1)(6s+ 5)(6s+ 7), possible poles of fλ+ are −1− ν, −5/6− ν, −6/7− ν

with ν ∈ N and they are at most simple poles. The residue Resλ=−1f
λ
+ is a solution of

D2/(D2(2x∂x + 3y∂y + 6) +D2(2y∂x + 3x2∂y) +D2(x
3 − y2)).

Resλ=−5/6f
λ
+ is a solution ofD2/(D2x+D2y). Hence it is a constant multiple of the delta

function δ(x, y) = δ(x)δ(y). Resλ=−7/6f
λ
+ is a solution ofD2/(D2x

2+D2(x∂x+2)+D2y).

Hence it is a constant multiple of δ′(x)δ(y).

Example 3.9. Set f = x3−y2 and φ(x, y) = exp(−x2−y2). Then φ is a solution

of a holonomic systemM := D2/(D2(∂x+2x)+D2(∂y+2y)) on R2, which is f -saturated

since it is a simple D2-module. The generalized b-function for f and u := [1] ∈ M is

bf (s) = (s + 1)(6s + 5)(6s + 7). The local zeta function Z(λ) :=
∫
R2 f

λ
+φdxdy is

annihilated by the difference operator

32E4
s + 16(4s+ 13)E3

s − 4(s+ 3)(27s2 + 154s+ 211)E2
s

− 6(s+ 2)(s+ 3)(36s2 + 162s+ 173)Es − 3(s+ 1)(s+ 2)(s+ 3)(6s+ 5)(6s+ 13),

where s is an indeterminate corresponding to λ. From this we see that −7/6 is not a

pole of Z(λ).

Example 3.10. Set φ(x) = exp(−x − 1/x) for x > 0 and φ(x) = 0 for x ≤ 0.

Then φ(x) belongs to the space S(R) of rapidly decreasing functions on R and satisfies

a holonomic system

M := D1/D1(x
2∂x + x2 − 1),

which is x-saturated. The generalized b-function for f = x and u = [1] ∈ M is s + 1.

The local zeta function Z(λ) :=
∫
R x

λ
+φ(x) dx is entire (i.e., without poles) and satisfies

a difference equation

(E2
λ − (λ+ 2)Eλ − 1)Z(λ) = 0.

This can also be deduced by integration by parts.

Example 3.11. Set φ1(x) = exp(−x− 1/x) for x > 0 and φ1(x) = 0 for x ≤ 0.

Set φ(x, y) = φ1(x)e
−y. Then φ satisfies a holonomic system

M := D2/(D2(x
2∂x + x2 − 1) +D2(∂y + 1)).
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The generalized b-function for f := y3 − x2 and u = [1] ∈ M is s + 1. Moreover, we

can confirm that M is f -saturated by using the localization algorithm in [7]. The local

zeta function Z(λ) :=
∫
R2 f

λ
+φdxdy is well-defined since f(x, y) < 0 if y < 0. It is

annihilated by a difference operator of the form

E11
s + a10(s)E

10
s + · · ·+ a1(s)Es + a0(s),

a0(s) = c(s+ 1)(s+ 2)(s+ 3)(s+ 4)(s+ 5)(s+ 6)(s+ 7)(s+ 8)(s+ 9),

where c is a positive rational number and a1(s), . . . , a10(s) are polynomials of s with

rational coefficients. Possible poles of fλ+φ are the negative integers. For example, −1

is at most a simple pole of fλ+φ and Resλ=−1f
λ
+φ is a solution of a holonomic system

D2/(D2(3x
2∂x + 2xy∂y + 3x2 + (2y + 6)x− 3) +D2(y

3 − x2)).

Example 3.12. Set f = x3 − y2z2. The b-function of f is (s+ 1)(3s+ 4)(3s+

5)(6s+ 5)2(6s+ 7)2. For example, its maximum root −5/6 is at most a pole of order 2

of fλ+. Let

fλ+ =
(
λ+

5

6

)−2

φ−2 +
(
λ+

5

6

)−1

φ−1 + φ0 + · · ·

be the Laurent expansion. Then φ−2 satisfies

xφ−2 = yφ−2 = zφ−2 = 0.

Hence φ−2 is a constant multiple of δ(x, y). On the other hand, φ−1 satisfies a holonomic

system

xφ−1 = (y∂y − z∂z)φ−1 = yzφ−1 = (z2∂z − z)φ−1 = 0.

References

[1] Kashiwara, M, On the holonomic systems of linear differential equations, II, Invent. Math.

49 (1978), 121–135.

[2] Kashiwara, M., Kawai, T., On the characteristic variety of a holonomic system with regular

singularities, Advances in Math. 34 (1979), 163–184.

[3] Oaku, T., Algorithms for b-functions, restrictions, and algebraic local cohomology of D-

modules, Advances in Appl. Math. 19 (1997), 61–105

[4] Oaku, T., Algorithms for integrals of holonomic functions over domains defined by poly-

nomial inequalities, J. Symbolic Computation 50 (2013), 1–27

[5] Oaku, T., Takayama, N., An algorithm for de Rham cohomology groups of the complement

of an affine variety. J. Pure Appl. Algebra 139 (1999), 201–233.

[6] Oaku, T., Takayama, N., Algorithms for D-modules — restriction, tensor product, local-

ization, and local cohomology groups. J. Pure Appl. Algebra 156 (2001), 267–308.

[7] Oaku, T,. Takayama, N., Walther, U., A localization algorithm forD-modules, J. Symbolic

Computation 29 (2000), 721–728

[8] Walther, U., Algorithmic computation of local cohomology modules and the local coho-

mological dimension of algebraic varieties, J. Pure Appl. Algebra 139 (1998), 303–321


