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Abstract

A holonomic function is a differentiable or generalized function which satisfies a holonomic sys-
tem of linear partial or ordinary differential equations with polynomial coefficients. The main
purpose of this paper is to present algorithms for computing a holonomic system for the def-
inite integral of a holonomic function with parameters over a domain defined by polynomial
inequalities. If the integrand satisfies a holonomic difference-differential system including pa-
rameters, then a holonomic difference-differential system for the integral can also be computed.
In the algorithms, holonomic distributions (generalized functions in the sense of L. Schwartz)
are inevitably involved even if the integrand is a usual function.
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Introduction

Holonomic systems of linear differential equations, which play a central role in the
D-module theory, were introduced by Bernštĕın (1971) in the algebraic setting, and by
Sato et al. (1973) in the analytic setting under the name of ‘maximally overdetermined
systems’. We follow the formulation by Bernstein, which would be the more adapted
to practical applications with computers. Hence, in the present paper, we mean by a
holonomic function a function which satisfies a holonomic system of linear differential
equations with polynomial coefficients. Two equivalent definitions of a holonomic system
will be recalled in Section 1.

Most of the special functions in one variable such as various hypergeometric functions
and the Bessel function are holonomic by the definition. As an important class of holo-
nomic functions in several variables, let us consider the multi-valued analytic function
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u = fλ1
1 · · · fλm

m with non-zero polynomials f1, . . . , fm in n variables. As a multi-valued
analytic function, u is defined on {x ∈ Cn | f1(x) · · · fm(x) ̸= 0} and is holonomic for any
complex number λj . We can regard this function also as a distribution (f1)

λ1
+ · · · (fm)λm

+

defined on Rn in the sense of L. Schwartz if fj are real polynomials and (λ1, . . . , λm)
avoids some exceptional set. Such a distribution was introduced by Gel’fand and Shilov
(1964) in some restricted cases. See e.g., Kashiwara and Kawai (1979) and Sabbah (1987)
for a theoretical study on generalized functions including such a distribution. In partic-
ular, substituting zeros for the parameters yields

(f1)
0
+ · · · (fm)0+ = Y (f1) · · ·Y (fm),

where Y denotes the Heaviside function, i.e., Y (t) = 1 for t > 0 and Y (t) = 0 for t ≤ 0.
The Heaviside function will play an essential role in the present paper.

Algorithmic studies, especially the integration, of holonomic functions were pioneered
by Almkvist and Zeilberger (1990) who introduced what is called the creative telescoping
method which applies to both difference and differential holonomic systems. Then by us-
ing Gröbner bases in the ring of differential operators, Takayama (1992) and Takayama
(1990) introduced two algorithms for integration of holonomic functions. These algo-
rithms were generalized to Ore algebras by Chyzak (1998), Chyzak and Salvy (1998).

On the other hand, a precisely D-module theoretic algorithm was given by Oaku and
Takayama (1999) (see also Saito et al. (2000), Oaku et al. (2003)), which is the ‘Fourier
transform’ of the restriction algorithm firstly introduced by Oaku (1997b) and generalized
by Oaku and Takayama (2001). Given a holonomic system for a function u(x1, . . . , xn),
this algorithm outputs a holonomic system for the integral

v(x1, . . . , xn−d) =

∫
Rd

u(x1, . . . , xn) dxn−d+1 · · · dxn.

This algorithm might not be efficient enough but has an advantage in the following two
respects: First, the holonomicity of the output is guaranteed in the D-module theory if
the input is holonomic. Second, it applies to generalized functions as well as to infinitely
differentiable functions since it does not involve computation with rational functions as
coefficients.

The purpose of the present paper is to apply this D-module theoretic algorithm to
the integral over a domain defined by one or more polynomial inequalities by using the
Heaviside function, generalizing and elaborating a method sketched in Oaku et al. (2003).
More precisely, we are concerned with the integral

v(x1, . . . , xn−d) =

∫
D(x1,...,xn−d)

u(x1, . . . , xn) dxn−d+1 · · · dxn (1)

of a holonomic function u over a domain

D(x1, . . . , xn−d) := {(xn−d+1, . . . , xn) ∈ Rd | f1(x1, . . . , xn) ≥ 0, . . . , fm(x1, . . . , xn) ≥ 0}

with polynomials f1, . . . , fm with real coefficients.
Let us present two explanatory examples.

Example 1. Set

v(x) =

∫ 1

0

exy dy =
ex − 1

x
.
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The integrand u(x, y) = exy satisfies a holonomic system

(∂x − y)u(x, y) = (∂y − x)u(x, y) = 0

with ∂x = ∂/∂x and ∂y = ∂/∂y. If we apply the integration algorithm to this holonomic
system, we get an incorrect equation xv(x) = 0, which follows from formal integration of
the equation (∂y − x)exy = 0 with respect to y; this integral does not exist in fact.

In order to get rid of the boundary conditions at y = 0, 1, we rewrite this integral in
terms of the Heaviside function Y (t) to get

v(x) =

∫ ∞

−∞
exyY (y)Y (1− y) dy.

The new integrand ũ(x, y) = exyY (y)Y (1− y) satisfies a holonomic system

y(y − 1)(∂y − x)ũ(x, y) = (∂x − y)ũ(x, y) = 0

in the sense of distribution theory. In fact one has

y(y − 1)(∂y − x)(exyY (y)Y (1− y)) = y(y − 1)exy(δ(y)− δ(y − 1)) = 0,

where δ(y) = ∂yY (y) denotes the Dirac delta function. The integration algorithm applied
to this holonomic system outputs an answer

(x∂2
x − (x− 2)∂x − 1)v(x) = 0,

which is correct as is seen by rewriting the operator as follows:

x∂2
x − (x− 2)∂x − 1 = ∂x(∂x − 1)x.

Of course, one can treat integrals like this one over an interval by the classical creative
telescoping method taking the boundary conditions into account (see e.g, Chyzak (1998)).
See also a recent work by Nakayama and Nishiyama (2010) for an algorithm to compute
inhomogeneous differential equations for such an integral. However, it does not seem
straightforward to apply these methods to more general integrals such as the following:

Example 2. Set

v(t) =

∫
x2+y2≤t

dxdy

1 + x2 + y2
=

∫
R2

(1 + x2 + y2)−1Y (t− x2 − y2) dxdy.

Note that v(t) is continuous in t ∈ R and v(t) = 0 holds for t < 0. By using an algorithm
in Oaku and Takayama (1999), we get generators

y∂x − x∂y, (−x2 − y2 + t)∂t − s1,

(x2 + 1)∂x + yx∂y + (2t+ 2)x∂t + (−2s1 − 2s2)x

of the annihilating ideal of the analytic function (t − x2 − y2)s1(1 + x2 + y2)s2 with
parameters s1, s2. Substituting 0 for s1 and −1 for s2 gives a holonomic system for the
distribution

u(x, y, t) = (1 + x2 + y2)−1Y (t− x2 − y2).

Then applying the integration algorithm to this holonomic system, we obtain a differential
equation

((t2 + t)∂2
t + t∂t)v = 0.
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In fact, integration in polar coordinates gives v(t) = πY (t) log(1 + t). It is easy to verify
that v(t) satisfies the above equation as distribution.

For the general integral (1), we rewrite it in the form

v(x1, . . . , xn−d) =

∫
Rd

u(x1, . . . , xn)Y (f1) · · ·Y (fm) dxn−d+1 · · · dxn.

Hence the integration algorithm can be applied if a holonomic system for the product
uY (f1) . . . Y (fm) is computed. We shall describe the procedure in detail and prove its
validity. We remark that the ‘indefinite integral’

v(x1, . . . , xn) =

∫ xn

a

u(x1, . . . , xn−1, t) dt

is a special case of (1).
Our algorithm consists of the following two steps:
(1) For a given holonomic system for a function u, compute a holonomic system for

uY (f1) · · ·Y (fm).
(2) Compute a holonomic system for the integral

∫
Rd uY (f1) · · ·Y (fm) dxn−d+1 · · · dxn.

For the first step, we begin with an algorithm to compute a holonomic system for
Y (f1) · · ·Y (fm). Then the tensor product computation for D-modules gives an answer
to the first step. For the case where u is a complex power, or the exponential of a
polynomial, the tensor product computation is unnecessary as in the previous examples.
Even for general u, we shall give an alternative method which avoids the tensor product
computation. The second step can be done by the integration algorithm for D-modules.

In many practical examples, the integrand can have auxiliary parameters other than
x1, . . . , xn above but cannot be regarded as a holonomic function including the parame-
ters. For example, consider the integral

v(x1, . . . , xn−d, s1, . . . , sm) =

∫
D(x1,...,xn−d)

u(f1)
s1
+ · · · (fm)sm+ dxn−d+1 · · · dxn

with parameters s1, . . . , sm. The integration algorithm cannot be applied directly unless
we specify the values of the parameters s1, . . . , sm explicitly. However, it is often the case,
as with the example above, that the integrand satisfies a holonomic system of difference-
differential equations including the parameters. We also give an algorithm for computing
a holonomic difference-differential system for such an integral.

We have implemented the algorithms in the present paper by using a computer al-
gebra system Risa/Asir (Noro et al., 2011). In particular, we make use of a library file
nk restriction (Nakayama and Nishiyama, 2010) for computing restriction and inte-
gration.

This article is organized as follows: After recalling the notion of a holonomic system
in Section 1, we introduce the notion of a holonomic distribution and give an algorithm
(Algorithm 1) to compute a holonomic system for the distribution (f1)

λ1
+ · · · (fm)λm

+ in
Section 2. In Section 3, we review algorithms for computing holonomic systems for the
product and the integral of a holonomic function. Combining these algorithms, we give
a general algorithm (Algorithm 4) for computing a holonomic system for the integral
of the form (1) above in Section 4. Section 5 concerns an algorithm (Algorithm 5) for
the integral of a function which satisfies a holonomic system of difference-differential
equations by using the algebraic Mellin transformation. As a byproduct, we give an
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alternative algorithm (Algorithm 8) to compute a holonomic system for the integrand of
(1), which is more efficient than that based on the tensor product computation.

1. Differential operators and holonomic systems

Let us denote by Dn the ring of differential operators on the variables x = (x1, . . . , xn)
with polynomial coefficients. Let ∂ = ∂x = (∂1, . . . , ∂n) be the derivations with ∂i =
∂xi = ∂/∂xi. For multi-indices α = (α1, . . . , αn) ∈ Nn with N = {0, 1, 2, . . . }, we use
the notation xα = xα1

1 · · ·xαn
n and ∂α = ∂α

x = ∂α1
1 · · · ∂αn

n . Then an element P of Dn is
written in a finite sum

P =
∑

α,β∈Nn

aα,βx
α∂β , (2)

where aα,β belongs to C, the field of complex numbers.
Given P1, . . . , Pr ∈ Dn, we associate the left ideal I = DnP1 + · · ·+DnPr generated

by P1, . . . , Pr with a system of linear differential equations

P1u = · · · = Pru = 0 (3)

for an unknown function u. This enables us to work with a left ideal of Dn instead of
each system of linear differential equations. Here we suppose that the unknown function
u belongs to a ‘function space’ F which is a left Dn-module. Examples of such F are
the set C∞(U) of C∞ functions on an open subset U of Rn, the set Õ(U) of possibly
multi-valued analytic functions on an open subset U of Cn, the set D′(U) of the Schwartz
distributions on an open subset U of Rn, and the set S′(Rn) of tempered distributions.

A weight vector for Dn is an integer vector

w = (w1, . . . , wn;wn+1, · · · , w2n) ∈ Z2n

with the conditions wi + wn+i ≥ 0 for i = 1, . . . , n, which are necessary in view of the
commutation relation ∂ixi = xi∂i +1 in Dn. For a nonzero differential operator P of the
form (2), we define its w-order to be

ordw(P ) := max{⟨w, (α, β)⟩ = w1α1 + · · ·+ wnαn + wn+1β1 + · · ·+ w2nβn | aα,β ̸= 0}.

We set ordw(0) := −∞. A weight vector w induces the w-filtration

Fw
k (Dn) := {P ∈ Dn | ordw(P ) ≤ k} (k ∈ Z)

on the ring Dn. Following Bernštĕın (1971), let us define the notion of holonomic system
by using the weight vector (1,1) = (1, . . . , ; 1, . . . , 1) ∈ Z2n. Let M be a left Dn-module
and {Fk(M)}k∈Z be a good (1,1)-filtration. This means the following properties:
(1) every Fk(M) is a finite dimensional vector space over C;
(2) Fk(M) ⊂ Fk+1(M) for all k ∈ Z;
(3)

∪
k∈Z

Fk(M) = M ;

(4) F
(1,1)
i (Dn)Fk(M) ⊂ Fi+k(M) for all i, k ∈ Z;

(5) there exists k1 ∈ Z such that Fk(M) = 0 for k ≤ k1;

(6) there exists k2 ∈ Z such that F
(1,1)
i (Dn)Fk(M) = Fi+k(M) for k ≥ k2.

Then there exists a polynomial p(k) in k such that dimC Fk(M) = p(k) for sufficiently
large k. The degree of p(k) does not depend on the choice of a good (1,1)-filtration of M
and is called the dimension of the module M , which we denote by d(M). It was proved by
Bernštĕın (1971) that d(M) ≥ n if M ̸= 0. Following Bernstein let us adopt the following
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Definition 1. A finitely generated left Dn-module M is called a holonomic system
if d(M) ≤ n. We also call a left ideal I of Dn to be a holonomic ideal, by abuse of
terminology, if the left Dn-module Dn/I is holonomic.

Note that d(M) ≤ n is equivalent to d(M) = n or M = 0 in view of the Bernstein
inequality stated above. The dimension d(M) can be computed as the degree of the
Hilbert function from a Gröbner basis with respect to a term order which is compatible
with the (1,1)-filtration.

Let us recall another characterization of a holonomic system essentially given by Sato
et al. (1973). For this we use the weight vector w = (0,1) = (0, . . . , 0; 1, . . . , 1). Let P be
a nonzero differential operator written in the form (2) and set m := ord(0,1)(P ). Then
the principal symbol of P is the polynomial defined by

σ(P )(x, ξ) =
∑

|β|=m

∑
α

aα,βx
αξβ ,

where ξ = (ξ1, . . . , ξn) are the commutative variables corresponding to the derivations
∂ = (∂1, . . . , ∂n).

Set M := Dn/I with a left ideal I of Dn. The characteristic variety of M is defined
to be the algebraic set

Char(M) := {(x, ξ) ∈ C2n | σ(P )(x, ξ) = 0 for any P ∈ I \ {0}}

of C2n. It was proved in Sato et al. (1973) that the dimension of (every irreducible
component of) Char(M) is not less than n unless M = 0. Especially, M is holonomic if
and only if the dimension of the characteristic variety is n or else M = 0. The equivalence
of these two definitions of holonomic system is proved, e.g. in Chapter 3 of Björk (1979).
The characteristic variety can be computed via a Gröbner basis with respect to a term
order which is compatible with the (0,1)-weight (cf. Oaku (1994)).

2. Holonomic distributions

First let us recall the definition of distributions due to Schwartz (1950).

Definition 2. Let C∞
0 (U) be the set of the complex-valued C∞ functions on an open

set U of Rn with compact support. A distribution u on U is a linear functional

u : C∞
0 (U) ∋ φ 7−→ ⟨u, φ⟩ ∈ C

such that limj→∞⟨u, φj⟩ = 0 holds for a sequence {φj} of C∞
0 (U) if there is a compact

set K contained in U such that φj are zero on U \K and

lim
j→∞

sup
x∈U

|∂αφj(x)| = 0 for any α ∈ Nn.

The set of the distributions on U is denoted by D′(U). The derivative ∂ku of u with
respect to xk is defined by

⟨∂ku, φ⟩ = −⟨u, ∂kφ⟩ for any φ ∈ C∞
0 (U).

For a C∞ function a on U , the product au is defined by

⟨au, φ⟩ = ⟨u, aφ⟩ for any φ ∈ C∞
0 (U).
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In particular, by these actions of the derivations and the polynomial multiplications,
D′(U) has a natural structure of left Dn-module.

Definition 3. Let u be a C∞ function or a distribution defined on an open subset U of
Rn. Then we call u a holonomic function or a holonomic distribution on U if u satisfies
a holonomic system. In other words, u is holonomic if and only if its annihilator

AnnDnu := {P ∈ Dn | Pu = 0 on U}

is a holonomic ideal.

Let f1, . . . , fm be polynomials with real coefficients. We assume that the set {x ∈ Rn |
fi(x) > 0 (i = 1, . . . ,m)} is not empty. Then the distribution u = (f1)

λ1
+ · · · (fm)λm

+ on
Rn is defined to be

⟨u, φ⟩ =
∫
f1≥0,...,fm≥0

f1(x)
λ1 · · · fm(x)λmφ(x) dx

for φ ∈ C∞
0 (Rn) if Re λi ≥ 0 for each i. Moreover, u, that is, ⟨u, φ⟩ for any φ ∈ C∞

0 (Rn),
is holomorphic in (λ1, . . . , λm) on the domain

Ω+ := {(λ1, . . . , λm) ∈ Cm | Re λi > 0 (i = 1, . . . ,m)}

and is continuous in (λ1, . . . , λm) on the closure of Ω+.
In order to deduce a holonomic system for the distribution (f1)

λ1
+ · · · (fm)λm

+ , let us
first work with the ‘formal’ function fs1

1 · · · fsm
m . More precisely, setting F = f1 · · · fm,

we consider a free module

L := C[x, s, F−1]fs1
1 · · · fsm

m

over C[x, s, F−1] with s = (s1, . . . , sm), which has also a natural structure of left Dn[s]-
module induced from the formal derivation

∂i(af
s1
1 · · · fsm

m ) =
∂a

∂xi
fs1
1 · · · fsm

m + a
m∑
j=1

sj
∂fj
∂xi

f−1
j fs1

1 · · · fsm
m

with a ∈ C[x, s, F−1]. Then the annihilating ideal

AnnDn[s]f
s1
1 · · · fsm

m = {P (s) ∈ Dn[s] | P (s)fs1
1 · · · fsm

m = 0 in L}

can be computed precisely with an algorithm of Oaku and Takayama (1999) or of
Briançon and Maisonobe (2002) if the coefficients of f1, . . . , fm are contained in a com-
putable subfield of C.

Define a Dn[s]-submodule N of L by

N := Dn[s]f
s1
1 · · · fsm

m ≃ Dn[s]/AnnDn[s]f
s1
1 · · · fsm

m .

Let us specialize the parameters s. For λ = (λ1, . . . , λm) ∈ Cm, set

N (λ) := N/((s1 − λ1)N + · · ·+ (sm − λm)N ).

Then N (λ) has a natural structure of left Dn-module which is induced from the left
Dn[s]-module structure of N by the identification

Dn ≃ Dn[s]/((s1 − λ1)Dn[s] + · · ·+ (sm − λm)Dn[s]).
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Proposition 1. N (λ) is a holonomic Dn-module for any λ ∈ Cn.

Proof. We use a filtration

Fi(Dn[s]) := {P (s) =
k∑

j=0

Pjs
j | Pj ∈ Dn, j + ord(1,1)(Pj) ≤ i, k ∈ N} (i ∈ Z)

on Dn[s]. Let us define a filtration

Fk(L) :=
{

a

fk
1 · · · fk

m

fs1
1 · · · fsm

m | a ∈ C[x, s], deg a ≤ dk

}
(k ∈ N)

on L, where deg denotes the total degree in (x, s) and d := deg(f1 · · · fm) + 1. Then it is
easy to see that

Fk(N ) := Fk(Dn[s])f
s1
1 · · · fsm

m ⊂ Fk(L)
holds for k ≥ 0, which implies an inequality

dimC Fk(N ) ≤ dimC Fk(L) =
(
dk + n+m

n+m

)
.

There exists a polynomial p(k) in k such that dimC Fk(N ) = p(k) holds for integers
k large enough since {Fk(N )} is a good filtration on N . From the above inequality, it
follows that the degree of p(k) is at most n+m.

Set N ′(λm) := N/(sm − λm)N and define a good filtration on it by

Fk(N ′(λm)) = Fk(Dn[s])f
s/(Fk(Dn[s])f

s ∩ (sm − λm)N ) (k ∈ N)

with fs := fs1
1 · · · fsm

m . Since (sm−λm)Fk−1(Dn[s])f
s is contained in Fk(Dn[s])f

s∩(sm−
λm)N and the homomorphism sm −λm : N → N is injective in view of the definition of
N , we have

dimC Fk(N ′(λm)) = dimC Fk(Dn[s])f
s − dimC(Fk(Dn[s])f

s ∩ (sm − λm)N )

≤ dimC Fk(Dn[s])f
s − dimC Fk−1(Dn[s])f

s

= p(k)− p(k − 1)

for k sufficiently large. It follows that dimC Fk(N ′(λm)) coincides with a polynomial in k
of degree ≤ n+m− 1 for sufficiently large k. Proceeding in the same way, we can show
that dimC Fk(N (λ)) is a polynomial in k of degree ≤ n for k sufficiently large with

Fk(N (λ)) := Fk(N )/(Fk(N ) ∩ ((s1 − λ1)N + · · ·+ (sm − λm)N )).

Note that we have
Fk(N (λ)) = F

(1,1)
k (Dn)[f

s1
1 · · · fsm

m ]

with [fs1
1 · · · fsm

m ] being the modulo class of fs1
1 · · · fsm

m in N (λ). This implies that N (λ)
is a holonomic Dn-module. 2

Now let us make explicit the relation between the algebraic module N (λ) and the
distribution (f1)

λ1
+ · · · (fm)λm

+ .

Lemma 1. Let P (s) = P (s1, . . . , sm) be an element of Dn[s]. Then

P (λ1, . . . , λm)(f1)
λ1
+ · · · (fm)λm

+ = 0

holds in D′(Rn) for all (λ1, . . . , λm) ∈ Ω+ if and only if P (s)fs1
1 · · · fsm

m = 0 holds in L.
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Proof. It is easy to see that

∂i((f1)
λ1
+ · · · (fm)λm

+ ) =

m∑
j=1

λj
∂fj
∂xi

(f1)
λ1
+ · · · (fj)

λj−1
+ · · · (fm)λm

+

holds as distribution and the right-hand side is a locally integrable function if Re λj > 1
for j = 1, . . . ,m, in accordance with the action of ∂i on L. Let P (s) ∈ Dn[s]. There are
a(x, s) ∈ C[x, s] and a positive integer k such that

P (s)fs1
1 · · · fsm

m =
a(x, s)

(f1 · · · fm)k
fs1
1 · · · fsm

m

holds in L. Moreover, the right-hand side of this equality vanishes in L if and only if
a(x, s) = 0. From the observation above, we know that

P (λ1, . . . , λm)(f1)
λ1
+ · · · (fm)λm

+ = a(x, λ)(f1)
λ1−k
+ · · · (fm)λm−k

+

holds if Re λi > k (i = 1, . . . ,m). Since the distribution on the right-hand side is a locally
integrable function, it vanishes if and only if a(x, λ) = 0. The conclusion follows from the
uniqueness of analytic continuation. 2

Proposition 2. If the distribution (f1)
s1
+ · · · (fm)sm+ is well-defined and holomorphic in

s = (s1, . . . , sm) on a neighborhood of λ = (λ1, . . . , λm) ∈ Cm, then there is a surjective
Dn-homomorphism

N (λ) −→ Dn(f1)
λ1
+ · · · (fm)λm

+

which sends the residue class [fs1
1 · · · fsm

m ] ∈ N (λ) to (f1)
λ1
+ · · · (fm)λm

+ .

Proof. Let us define a surjective Dn-homomorphism Φ : N (λ) → Dn(f1)
λ1
+ · · · (fm)λm

+

by
Φ(P [fs1

1 · · · fsm
m ]) = P (f1)

λ1
+ · · · (fm)λm

+

for P ∈ Dn. If P [fs1
1 · · · fsm

m ] = 0 in N (λ), then there exist P1(s), . . . , Pm(s) ∈ Dn[s] and
Q[s] ∈ AnnDn[s]f

s1
1 · · · fsm

m such that

P = (s1 − λ1)P1(s) + · · ·+ (sm − λm)Pm(s) +Q(s).

Then in view of Lemma 1 and the uniqueness of analytic continuation, we have

P (f1)
λ1
+ · · · (fm)λm

+ = Q(λ)(f1)
λ1
+ · · · (fm)λm

+ = 0.

Hence Φ is well-defined as a homomorphism of left Dn-modules. 2

It is known that there exist a non-zero polynomial b(s) in s = (s1, . . . , sm) and an
operator P (s) ∈ Dn[s] such that

P (s)fs1+1
1 · · · fsm+1

m = b(s)fs1
1 · · · fsm

m , b(s) =
ν∏

i=1

(ci1s1 + · · ·+ cimsm + ci) (4)

with non-negative integers cij and positive rational numbers ci. This was proved by
Kashiwara (1976/77) for m = 1. For m ≥ 2, Sabbah (1987) proved the existence of b(S)
and the rationality of cij ; Gyoja (1993)) proved the rationality of ci. An algorithm to
compute the ideal consisting of such b(s), which is called the Bernstein-Sato ideal, was
given by Oaku and Takayama (1999). For the case m = 1, an algorithm to compute such
a functional equation was given in Oaku (1997a). See also Oaku (2009) for an algorithm
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to compute a minimal one in the sense that the differential operator on the left-hand
side has minimal degree with respect to ∂x and s.

In view of Lemma 1, we obtain from (4)

b(λ1, . . . , λm)⟨(f1)λ1
+ · · · (fm)λm

+ , φ⟩ = ⟨P (λ1, . . . , λm)(f1)
λ1+1
+ · · · (fm)λm+1

+ , φ⟩
= ⟨(f1)λ1+1

+ · · · (fm)λm+1
+ , tP (λ1, . . . , λm)φ⟩

for φ ∈ C∞
0 (Rn) with the formal adjoint operator tP (s) ∈ Dn[s] of P (s). By using this

functional equation repeatedly, we know that (f1)
λ1
+ · · · (fm)λm

+ can be continued to a
distribution in x which is meromorphic in (λ1, . . . , λm) on the whole Cm. More precisely,
(f1)

λ1
+ · · · (fm)λm

+ is holomorphic in (λ1, . . . , λm) on

Ω(f1, . . . , fm) := {(λ1, . . . , λm) ∈ Cm | b(λ1 + k, . . . , λm + k) ̸= 0 for any k ∈ N}.

Lemma 2. The set Ω(f1, . . . , fm) contains the closure of Ω+.

Proof. Assume that λ(0) = (λ
(0)
1 , . . . , λ

(0)
m ) belongs to the closure of Ω+, i.e, Re λ

(0)
i ≥ 0

for any i. Then we have

Re
(
ci1(λ

(0)
1 + k) + · · ·+ cim(λ(0)

m + k) + ci

)
≥ ci > 0

for any k ∈ N. This implies b(λ
(0)
1 +k, . . . , λ

(0)
m +k) ̸= 0. Hence λ(0) belongs to Ω(f1, . . . , fm). 2

Propositions 1 and 2 provide us with an algorithm to compute a holonomic system
for (f1)

λ1
+ · · · (fm)λm

+ , and hence for Y (f1) · · ·Y (fm) by virtue of Lemma 2.

Algorithm 1 (a holonomic system for (f1)
λ1
+ · · · (fm)λm

+ ).
Input: f1, . . . , fm ∈ R[x] and λ = (λ1, . . . , λm) ∈ Ω(f1, . . . , fm).
Output: A set G of generators of a holonomic ideal contained in
AnnDn(f1)

λ1
+ · · · (fm)λm

+ .
1. Compute a set G1 of generators of the annihilator AnnDn[s]f

s1
1 · · · fsm

m by an algo-
rithm of Oaku and Takayama (1999) or of Briançon and Maisonobe (2002). Fol-
lowing the former, let J be the left ideal of the ring of differential operators on the
variables x1, . . . , xn, t1, . . . , tm which is generated by

∂xi −
m∑
j=1

∂fj
∂xi

∂tj (i = 1, . . . , n), tj − fj (j = 1, . . . ,m).

Then compute the intersection J ∩Dn[s] with the identification sj = −∂tj tj (j =
1, . . . ,m) by using Algorithm 7 in Section 5.

2. Set G := {P (λ) | P (s) ∈ G1}.

We do not know if the output of this algorithm precisely coincides with the annihilating
ideal of (f1)

λ1
+ · · · (fm)λm

+ . As a trivial counter example, take f = x2 with a variable x.
Then ∂xY (f) = ∂x1 = 0 holds. On the other hand, the annihilating ideal of fs = x2s

is generated by x∂x − 2s. Hence ∂x cannot be obtained by substitution s = 0 from an
annihilator of fs.

Example 3. Set f = x3 − y2. From the functional equation(
1

27
∂3
x +

1

8
y∂3

y − 4λ+ 3

8
∂2
y

)
fλ+1
+ = (λ+ 1)

(
λ+

5

6

)(
λ+

7

6

)
fλ
+,
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we know that the distribution u := fλ
+ is holomorphic in λ on the set

Ω(f) = {λ ∈ C | λ ̸= −1− k, −5

6
− k, −7

6
− k (k = 0, 1, 2, . . . )}.

A holonomic system for u is given by

(2y∂x + 3x2∂y)u = (2x∂x + 3y∂y − 6λ)u = 0.

In particular, the Heaviside function Y (f) satisfies a holonomic system

(2y∂x + 3x2∂y)Y (f) = (2x∂x + 3y∂y)Y (f) = 0.

Differentiation of the distribution (f1)
λ1
+ · · · (fm)λm

+ with respect to the complex pa-
rameters λ1, . . . , λm yields a distribution

(f1)
λ1
+ · · · (fm)λm

+ (log f1)
ν1 · · · (log fm)νm ,

which is holomorphic in λ on Ω(f1, . . . , fm) for arbitrary non-negative integers ν1, . . . , νm.
A holonomic system for this distribution can be computed through differentiation of the
annihilator of fs1

1 · · · fsm
m with respect to the parameters s1, . . . , sm.

For the sake of simplicity, let us describe an algorithm in case m = 1. The general
case m ≥ 2 is quite similar.

Algorithm 2 (a holonomic system for fλ
+(log f)

k).
Input: f ∈ R[x], k ∈ N and λ ∈ Ω(f).
Output: a set G of generators of a holonomic ideal contained in AnnDnf

λ(log f)k.
1. Compute a set G1 of generators of the annihilator AnnDn[s]f

s.

2. Let e1 = (1, 0, . . . , 0), · · · , ek+1 = (0, . . . , 0, 1) be the canonical basis of Zk+1. For
each P (s) ∈ G1 and an integer j with 0 ≤ j ≤ k, set

P (j)(s) :=

j∑
i=0

(
j

i

)
∂j−iP (s)

∂sj−i
ei+1 ∈ (Dn[s])

k+1.

3. Let L be the submodule of Dn[s]
k+1 generated by the set {P (j)(s) | P (s) ∈ G1, 0 ≤

j ≤ k}. Compute a set G2 of generators of the ideal

I := {Q(s) ∈ Dn[s] | Q(s)ek+1 ∈ L}

by eliminating e1, . . . , ek via a Gröbner basis of L with respect to a ‘position over
term’ ordering.

4. Set G := {Q(λ) | Q(s) ∈ G2}.

Proposition 3. The ideal I of the preceding algorithm is holonomic and annihilates the
distribution fλ

+(log f)
k for any λ ∈ Ω(f).

Proof. Let P (s) belong to G1. Differentiating the equation P (s)fs = 0 with respect to
s, one gets

j∑
i=0

(
j

i

)
∂j−iP (s)

∂sj−i
fs(log f)i = 0.

Hence P (j)(λ) annihilates the vector (fλ
+, f

λ
+ log f, . . . , fλ

+(log f)
k) of distributions for

λ ∈ Ω(f). It follows that each element of G annihilates fλ
+(log f)

k.

11



In order to prove the holonomicity, let L(λ) be the submodule of (Dn)
k+1 generated

by {P (λ) | P (s) ∈ L}. Then it suffices to prove that (Dn)
k+1/L(λ) is holonomic since

Dn/I is its submodule. We regard (Dn)
j+1 as the submodule of (Dn)

k+1 generated by
e1, . . . , ej+1 if 0 ≤ j ≤ k. Set

N (λ, j) := (Dn)
j+1/(L(λ) ∩ (Dn)

j+1).

Then we have an increasing sequence

N (λ, 0) ⊂ N (λ, 1) ⊂ · · · ⊂ N (λ, k) = (Dn)
k+1/L(λ)

of left Dn-modules. We have only to show that N (λ, 0) and N (λ, j)/N (λ, j − 1) are
holonomic Dn-modules for 1 ≤ j ≤ k.

Note that N (λ) = Dn[s]f
s/(s− λ)Dn[s]f

s is isomorphic to Dn/J(λ) with

J(λ) := {P (λ) | P (s) ∈ AnnDn[s]f
s}.

From the definition we have J(λ) ⊂ L(λ)∩Dn. Together with Proposition 1 this implies
that N (λ, 0) is holonomic. Let ιj be the homomorphism of Dn to (Dn)

j+1 which sends
P ∈ Dn to Pej+1. It is easy to see that J(λ)ej+1 is contained in (L(λ) ∩ (Dn)

j+1) +
(Dn)

j . Hence ιj induces a surjective homomorphism of the holonomic module N (λ) to
N (λ, j)/N (λ, j − 1), which is hence also holonomic. This completes the proof. 2

Example 4. Set f = x3 − y2. Then Algorithm 2 outputs a set of generators

2y∂x + 3x2∂y,

4x2∂2
x + (12yx∂y + (−24λ+ 4)x)∂x + 9y2∂2

y + (−36λ+ 9)y∂y + 36λ2

of the annihilating ideal of fλ
+ log f .

Finally let us consider the delta function δ(f) for a non-singular real polynomial
f ∈ R[x] in n variables. As distribution, δ(f) is defined to be the integral∫

f=0

φω

for φ ∈ C∞
0 (Rn), where ω is the volume element of the hypersurface f = 0 such that

df ∧ ω = dx1 ∧ · · · ∧ dxn. The following should be well-known:

Proposition 4. Let f ∈ R[x] be non-singular in Cn; i.e., the variety defined by

{x ∈ Cn | f(x) = ∂f

∂x1
(x) = · · · = ∂f

∂xn
(x) = 0}

be empty. Then δ(f) satisfies a holonomic system

fδ(f) = 0,

(
∂f

∂xj
∂i −

∂f

∂xi
∂j

)
δ(f) = 0 (1 ≤ i < j ≤ n).

Proof. The characteristic variety is contained in the n-dimensional algebraic set{
(x, ξ) ∈ C2n | f(x) = 0, ξi = c

∂f

∂xi
(i = 1, . . . , n), c ∈ C

}
.

Hence the system above is holonomic. 2
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3. Operations on holonomic functions

Let us assume that u and v are holonomic functions or distributions. Then the following
functions or distributions are holonomic under the condition that they are well-defined.
Moreover, if a holonomic ideal for u (and also one for v if relevant) is explicitly given,
then there exist algorithms to compute a holonomic ideal which annihilates each of the
following functions:
(1) Pu with P ∈ Dn,
(2) The sum u+ v,
(3) The restriction u|Y of u to an affine subspace Y of Rn if it is well-defined as in the

case where u is smooth,
(4) The product uv if it is well-defined as in the case where u is C∞ and v is a

distribution,

(5) The definite integral

∫
Rd

u(x1, . . . , xn−d, xn−d+1, . . . , xn) dxn−d+1 · · · dxn with pa-

rameters if it is well-defined as in the case where u has a compact support with
respect to the integration variables.

Let us explain briefly how to compute holonomic ideals for functions above. The
algorithms which will be presented in this section are more or less well-known at present.
Nevertheless, we would like to recall them in order to verify that they certainly apply to
holonomic distributions as well as for the reader’s convenience.

Let I and J be holonomic ideals for u and v respectively. First, a holonomic ideal for
Pu can be computed as an ideal quotient I : P by using Gröbner bases in the same way as
in the polynomial ring. The left Dn-homomorphism of Dn to itself which sends Q ∈ Dn

to QP induces an injective homomorphism Dn/(I : P ) → Dn/I. Hence Dn/(I : P ) is
holonomic.

Second, a holonomic ideal for u + v can be computed as an ideal intersection I ∩ J .
The left Dn-homomorphism of Dn to (Dn)

2 which sends Q ∈ Dn to (Q,−Q) induces an
injective homomorphism

Dn/(I ∩ J) → (D/I)⊕ (D/J).

This implies that Dn/(I ∩ J) is holonomic.
The restriction algorithm was given in Oaku (1997b) for one codimensional case and in

Oaku and Takayama (2001) for the general case. The restriction algorithm is translated
to the integration algorithm through the algebraic Fourier transformation of the ring of
differential operators. Hence let us describe the integration algorithm instead.

Let u(x, t) be a holonomic distribution defined on U × Rd in the variables (x, t) =
(x1, . . . , xn, t1, . . . , td), where U is an open set of Rn. Then the definite integral of u(x, t)
with respect to t = (t1, . . . , td) is defined as the distribution

C∞
0 (U) ∋ φ(x) 7−→ ⟨

∫
Rd

u(x, t) dt1 · · · dtd, φ⟩ = ⟨u(x, t), φ(x)1(t)⟩,

where 1(t) denotes the identity function which takes only the value 1 for all t. This definite
integral is well-defined if u(x, t) is a distribution with proper support with respect to t,
i.e., for each x0 ∈ U , there exists a neighborhood V of x0 and a compact set K of Rd

such that u(x, t) vanishes on V × (Rd \K), or else if u(x, t) is C∞ in (x, t) and rapidly
decreasing with respect to t, i.e., for any x0 and α, β ∈ Nd, there exists a neighborhood
V of x0 such that tα∂β

t u(x, t) is bounded on V × Rd.
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Let I be a left ideal of Dn+d which is contained in AnnDn+d
u(x, t). The D-module

theoretic integration of the module Dn+d/I is defined to be the left Dn-module∫
Dn+d/I dt := Dn+d/(∂t1Dn+d + · · ·+ ∂tdDn+d + I).

Let w = (w1, . . . , w2n+2d) ∈ Z2(n+d) be the weight vector for Dn+d such that wn+i = 1
(the weight for ti) and w2n+d+i = −1 (the weight for ∂ti) for i = 1, . . . , d and that other
components of w are zero. If I is a holonomic ideal, then there exists a nonzero univariate
polynomial b(s) (the b-function of I with respect to w) of the minimum degree such that

b(−∂t1t1 − · · · − ∂tdtd) + P ∈ I

with some P ∈ Fw
−1(Dn+d). Let k1 be the maximum integral root of b(s) = 0. (Set

k1 = −1 if there is none.) Then the Dn-module
∫
Dn+d/I dt is generated by the residue

classes of tα with α ∈ Nd such that |α| ≤ k1. Set

N := {(Pα)α ∈
⊕

|α|≤k1

Dn |
∑

|α|≤k1

Pαt
α ∈ ∂t1Dn+d + · · ·+ ∂tdDn+d + I}.

The b-function b(s) and a set of generators of N can be computed by a Gröbner basis
of I with respect to the weight vector w. Then we have an isomorphism

∫
Dn+d/I dt ≃(⊕

|α|≤k1
Dn

)
/N , which is a holonomic Dn-module.

Definition 4. The integration ideal of a left ideal I of Dn+d is the left ideal of Dn

defined by
N0 := (∂t1Dn+d + · · ·+ ∂tdDn+d + I) ∩Dn.

Once a set of generators of N is obtained, the integration ideal N0 can be computed
by elimination in the free module ⊕|α|≤k1

Dn.

Theorem 1. Suppose that the definite integral v(x) :=
∫
Rd u(x, t) dt1 · · · dtd is well-

defined as a distribution on an open set U of Rn and I is a holonomic ideal of Dn+d

annihilating u(x, t). Then the integration ideal N0 of I is holonomic and annihilates v(x).

Proof. Let P = P (x, ∂x) ∈ Dn belong to N0. Then there exist Qi = Qi(x, t, ∂x, ∂t) ∈
Dn+d and R ∈ I such that

P = ∂t1Q1 + · · ·+ ∂tdQd +R.

Thus for any φ(x) ∈ C∞
0 (U) one has

⟨P
∫
Rd

u(x, t) dt1 · · · dtd, φ⟩ = ⟨Pu(x, t), φ(x)1(t)⟩

=
d∑

i=1

⟨∂tiQiu(x, t), φ(x)1(t)⟩

= −
d∑

i=1

⟨Qiu(x, t), ∂ti(φ(x)1(t))⟩ = 0.

The Dn-module Dn/N0 is holonomic since it can be regarded as a submodule of the
holonomic module

⊕
|α|≤k1

Dn/N , the proof of the holonomicity of which is given, e.g,

in Björk (1979). 2
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The integration algorithm is summarized as follows. See Oaku and Takayama (2001)
or Saito et al. (2000) for the correctness proof.

Algorithm 3 (integration ideal).
Input: A set G0 of generators of a holonomic ideal I of Dn+d annihilating u(x, t).
Output: A set G of generators of a holonomic ideal N0 of Dn annihilating
v(x) :=

∫
Rd u(x, t) dt1 · · · dtd.

1. Compute a Gröbner basis G1 of I with respect to a monomial order which is
compatible with the weight vector w = (0, . . . , 0, 1, . . . , 1; 0, . . . , 0,−1, . . . ,−1) for
the variables (x, t, ∂x, ∂t).

2. Compute a b-function of I with respect to w, which is a univariate polynomial b(s)
of the minimum degree such that b(−∂t1t1−· · ·−∂tdtd)+P belongs to I with some
P ∈ Fw

−1(Dn+d). This amounts to computing a generator of the intersection ideal

C[∂t1t1 + · · ·+ ∂tdtd] ∩
⊕
k∈Z

Fw
k (I)/Fw

k−1(I).

3. Let k1 be the maximum integral root of b(s) = 0 if any; if there is none or else
k1 < 0, then set G := {1} and quit.

4. For P ∈ G1 and α ∈ Nd such that ordw(P )+ |α| ≤ k1, one has an expression of the
form

tαP =
d∑

j=1

∂tjQj +
∑

|β|≤k1

Rβt
β

with Qj ∈ Dn+d and Rβ ∈ Dn. Set χ(t
αP ) := (Rβ)|β|≤k1

. Let N be the submodule
of

⊕
|β|≤k1

Dn generated by

{χ(tαP ) | P ∈ G1, ordw(P ) + |α| ≤ k1}.

5. Compute a set G of generators of N ∩ Dn via a Gröbner basis of N with an ap-
propriate ‘position over term’ ordering, where Dn is identified with the submodule⊕

|β|≤0 Dn of
⊕

|β|≤k1
Dn.

Finally let us describe an algorithm for the product. Let u(x) and v(x) be holonomic
distributions defined on Rn and assume that the product (Pu(x))(Qv(x)) is well-defined
as a distribution for any operators P,Q ∈ Dn and satisfies the following conditions:

(a(x)Pu)(Qv) = (Pu)(a(x)Qv), ∂i((Pu)(Qv)) = (∂iPu)(Qv) + (Pu)(∂iQv)

(∀P,Q ∈ Dn, ∀a(x) ∈ C[x], 1 ≤ ∀i ≤ n). (5)

This is certainly the case, for example, when either u(x) or v(x) is C∞.
Let I and J be left ideals of Dn such that

I ⊂ AnnDnu, J ⊂ AnnDnv

and set M := Dn/I and N := Dn/J . Let ũ and ṽ be the modulo classes of 1 ∈ Dn in M
and N respectively. Then there is a natural bilinear map

Ψ : M ×N ∋ (Pũ,Qṽ) 7−→ (Pu)(Qv) ∈ D′(Rn)

with the property Ψ(aP ũ,Qṽ) = Ψ(Pũ, aQṽ) for any a ∈ C[x]. Hence by the universal
property of tensor product, there is a Dn-homomorphism

Φ : M ⊗C[x] N → D′(Rn)

15



such that Φ((Pũ) ⊗ (Qṽ)) = Ψ(Pũ,Qṽ) = (Pu)(Qv) for any P,Q ∈ Dn. Moreover,
M ⊗C[x] N has a natural structure of left Dn-module and Φ gives a homomorphism of
Dn-module. This means that P (ũ⊗ ṽ) = 0 in M ⊗N implies P (uv) = 0 in D′(Rn). It is
also well-known that M ⊗C[x]N is holonomic if M and N are holonomic. (See e.g., Björk
(1979)). In conclusion we have

Proposition 5. Let u, v be distributions which satisfy (5). Let I and J be holonomic
left ideals of Dn which annihilate u and v respectively. Then the left ideal

AnnDn(ũ⊗ ṽ) := {P ∈ Dn | P (ũ⊗ ṽ) = 0 in M ⊗C[x] N}

is holonomic and annihilates the distribution uv.

The ‘algebraic’ annihilator AnnDn(ũ⊗ ṽ) can be computed as follows: First let I⊗̂J be
the left ideal of D2n which are generated by {P (x, ∂x) | P ∈ I} and {Q(y, ∂y) | Q ∈ J}.
We change the variables (x, y) to (x, z) by the substitution x = x, z = y − x. Then the
derivations are transformed by

∂xi = ∂xi − ∂zi , ∂yi = ∂zi (i = 1, . . . , n).

We regard I⊗̂J as a left ideal of the ring of differential operators Dx,z with respect to
the variables (x, z). Then the restriction of Dx,z/I⊗̂J to z = 0 is defined to be

Dx,z/(I⊗̂J + z1Dx,z + · · ·+ znDx,z)

as left Dn-module, where Dn stands for the ring of differential operators with respect to
the variables x = (x1, . . . , xn). One has an isomorphism (see Kashiwara (1978))

M ⊗C[x] N ≃ Dx,z/(I⊗̂J + z1Dx,z + · · ·+ znDx,z).

Set

I⊗̂J |∆ := {P (x, ∂x) ∈ Dn | P (x, ∂x)−
n∑

i=1

ziQi ∈ I⊗̂J (∃Q1, . . . , Qn ∈ Dx,z)}.

This ideal can be computed by the restriction algorithm and coincides with AnnDn(ũ⊗ ṽ)
in M ⊗C[x] N . See Oaku and Takayama (2001) for details.

For practical computations of restriction, integration and tensor product, we have
made use of a library file nk restriction.rr (Nakayama and Nishiyama, 2010) for a
computer algebra system Risa/Asir (Noro et al., 2011).

Example 5. Let us consider the integral

v(t) :=

∫
R3

fegδ(t− x2 − y2 − z2) dxdydz =
1

2
t
− 1

2
+

∫
S2
t

fegωt

for polynomials f, g, where ωt denotes the canonical volume element of the sphere S2
t :=

{(x, y, z) ∈ R3 | x2 + y2 + z2 = t}. The annihilating ideal I of δ(t − x2 − y2 − z2) is
generated by t − x2 − y2 − z2, ∂x + 2x∂t, ∂y + 2y∂t, ∂z + 2z∂t. Then the annihilator
of fδ(t − x2 − y2 − z2) is given by the ideal quotient I : f . Finally, the annihilator of
fegδ(t − x2 − y2 − z2) is given by the ideal eg(I : f)e−g. For example, if f = 1 and
g = x− y2 − z2, we get a differential equation

(4t∂3
t + (4t+ 6)∂2

t + 5∂t − 1)v(t) = 0,
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which has a regular singularity at t = 0 with exponents 0, 1
2 , 1.

On the other hand, if f = 2x2 − y2 − z2 and g = 0, we get v(t) = 0.

Example 6. The integral

v(t) :=

∫
R2

δ(t− x3 + y2)e−x2−y2

dxdy

satisfies a differential equation

(108t2∂5
t + (−216t2 + 648t)∂4

t + (108t2 − 972t+ 627)∂3
t

+ (356t− 606)∂2
t + (−64t+ 108)∂t + 32t− 48)v(t) = 0,

which has a regular singularity at t = 0 with exponents 0, 1, 2,−1
6 ,

7
6 .

4. Definite integrals with the Heaviside function

Let u be a holonomic function on Rn. Let f1, . . . , fm be nonzero polynomials in x =
(x1, . . . , xn) with real coefficients. Setting

D(x1, . . . , xn−d) = {(xn−d+1, . . . , xn) ∈ Rd | f1(x) ≥ 0, . . . , fm(x) ≥ 0},

let us consider the definite integral

v(x1, . . . , xn−d) =

∫
D(x1,...,xn−d)

u(x) dxn−d+1 · · · dxn

=

∫
Rd

Y (f1) · · ·Y (fm)u(x) dxn−d+1 · · · dxn.

We suppose that the set {fj(x) > 0 | j = 1, . . . ,m} is non-empty and the integral is
well-defined if (x1, . . . , xn−d) belongs to an open set U of Rn−d. This is the case, for
example, when u is a C∞ function on an open set W of Rn such that

{(x1, . . . , xn−d)} ×D(x1, . . . , xn−d) ⊂ W

and D(x1, . . . , xn−d) is compact if (x1, . . . , xn−d) ∈ U . Then a holonomic ideal for this
integral can be computed by combining the algorithms explained in the preceding two
sections. In conclusion, we have the following algorithm.

Algorithm 4 (a holonomic ideal for a definite integral).
Input: a holonomic ideal J annihilating the function u.
Output: a holonomic ideal J annihilating the definite integral v.

1. Compute a holonomic ideal annihilating Y (f1) · · ·Y (fm) by Algorithm 1.
2. Compute a holonomic ideal I annihilating the product uY (f1) · · ·Y (fm) by using

the tensor product computation (Proposition 5).
3. Compute the integration ideal of I with respect to xn−d+1, . . . , xn by Algorithm 3.

In the step 2 of this algorithm, if u is of the form u = (g1)
λ1
+ · · · (gp)

λp

+ eh with poly-
nomials g1, . . . , gp, h, then we can compute first a set G which generates a holonomic
annihilating ideal I of

(f1)
0
+ · · · (fm)0+(g1)

λ1
+ · · · (gp)

λp

+
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by using Algorithm 1. Then an annihilating ideal for uY (f1) · · ·Y (fp) can be computed as
the ideal ehIe−h of Dn, a set of generators of which is obtained by substituting ∂i−∂h/∂i
for ∂i (i = 1, . . . , n) in each element of G.

Example 7. Set

v(t) =

∫
x2+y2≤t

dxdy

1 + x4 + y4
=

∫
R2

Y (t− x2 − y2)(1 + x4 + y4)−1 dxdy.

First by Algorithm 1, we compute a holonomic system for the integrand

u(x, y, t) = Y (t− x2 − y2)(1 + x4 + y4)−1.

Then the integration algorithm outputs a holonomic system

((t5 + 3t3 + 2t)∂2
t + (2t4 + 3t2)∂t)v(t) = 0.

Solving this differential equation by quadratures, one gets

v(t) = C1

∫ t

0

ds√
s4 + 3s2 + 2

+ C2

for t > 0 with some constants C1, C2. On the other hand, by the change of variables to
polar coordinates, one has

v(0) = 0, lim
t→+0

v′(t) = π.

In conclusion, we have proved the identity

v(t) =
√
2πY (t)

∫ t

0

ds√
s4 + 3s2 + 2

.

Example 8. Set

v(t) =

∫
x6+x4y2+y4≤t

dxdy =

∫
R2

Y (t− x6 − x4y2 − y4) dxdy.

By integrating a holonomic system for the integrand, we obtain a differential equation

((147456t7 − 995328t6)∂7
t + (3096576t6 − 15925248t5)∂6

t

+ (20604416t5 − 74822400t4)∂5
t + (51215360t4 − 115430400t3)∂4

t

+ (43401540t3 − 46770960t2)∂3
t + (8707020t2 − 2078400t)∂2

t

+ (110880t− 105)∂t)v(t) = 0.

This differential equation has a regular singularity at t = 0 with exponents 0, 5
12 ,

7
12 ,

9
12 ,

11
12 ,

13
12 ,

15
12 . It seems difficult to identify v(t) in the 7-dimensional solution space of the

above equation.

Example 9. The integral

v(t) =

∫
x3−y2≥0

e−t(x2+y2) dxdy =

∫
R2

Y (x3 − y2)e−t(x2+y2) dxdy

satisfies a differential equation

(216t4∂4
t +(32t4+1836t3)∂3

t +(224t3+3594t2)∂2
t +(326t2+1371t)∂t+70t+15)v(t) = 0

for t > 0.
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5. Difference-differential equations for definite integrals

Let us consider the case where the integrand has some auxiliary parameters a =
(a1, . . . , ap) other than x = (x1, · · · , xn). The general algorithm given in the preced-
ing section does not work directly since the integrand does not necessarily satisfies a
holonomic system including the parameters a as variables. To avoid this drawback, we
consider difference-differential equations including the parameters.

Definition 5. A subset Ω of Cp is said to be shift-invariant if a ∈ Ω implies that
a+ (1, 0, . . . , 0), . . . , a+ (0, . . . , 0, 1) also belong to Ω.

Let u(x, a) be a distribution in x = (x1, . . . , xn) on an open set U of Rn with param-
eters a = (a1, . . . , ap) which belong to a shift-invariant subset Ω of Cp. Then the shift
operator Eai with respect to ai (i = 1, . . . , p) acts on u(x, a) by

Eaiu(x, a1, . . . , ai−1, ai, ai+1, . . . , ap) = u(x, a1, . . . , ai−1, ai + 1, ai+1, . . . , ap).

Let Dn be the ring of differential operators on the variables x. We denote by Dn⟨a,Ea⟩
the ring of difference-differential operators which is generated by ai and Eai (i = 1, . . . , p)
over Dn with the commutation relations

Eaiai − aiEai =

Eai (i = j)

0 (i ̸= j)
, EaiEaj = EajEai , aiaj = ajai,

where we assume that ai and Eai commute with the elements of Dn. We introduce new
variables t = (t1, . . . , tp) and the associated derivations ∂t = (∂t1 , . . . , ∂tp) and consider
the ring Dn+p of differential operators on the variables (x, t) = (x1, . . . , xn, t1, . . . , tp).
Let µ : Dn+p → Dn⟨a,Ea, E

−1
a ⟩ be the homomorphism of Dn-algebra defined by

µ(ti) = Eai , µ(∂ti) = −aiE
−1
ai

.

This homomorphism is well-defined since

µ(∂titi − ti∂ti) = µ(∂ti)µ(ti)− µ(ti)µ(∂ti) = −aiE
−1
ai

Eai − Eai(−ai)E
−1
ai

= 1.

It is easy to see that µ is injective and can be extended to an isomorphism of the
localization Dn+p[(t1 . . . tp)

−1] to Dn⟨a,Ea, E
−1
a ⟩.

The inverse shift E−1
ai

‘acts’ on u(x, a) by

E−1
ai

u(x, a1, . . . , ai−1, ai, ai+1, . . . , ap) = u(x, a1, . . . , ai−1, ai − 1, ai+1, . . . , ap)

if (a1, . . . , ai− 1, . . . , ap) ∈ Ω. In general, an element P of Dn⟨a,Ea, E
−1
a ⟩ acts on u(x, a)

if a− k1 ∈ Ω for a sufficiently large integer k with 1 := (1, . . . , 1) ∈ Zp. Then an element
Q of Dn+p acts on u(x, a) by Qu(x, a) := µ(Q)u(x, a).

In order to justify working in the extended ring Dn⟨a,Ea, E
−1
a ⟩, or in Dn+p, let us

make the following
Assumption: Let u(x, a) be a distribution in x with parameters a defined on V ×

Rd × Ω with an open set V of Rn−d and a shift-invariant set Ω of Cp. The integral

v(x′, a) :=

∫
Rd

u(x, a) dxn−d+1 · · · dxn (6)

with x′ = (x1, . . . , xn−d) is well-defined for (x′, a) ∈ V × Ω. Let P be an element
of Dn−d⟨a,Ea, E

−1
a ⟩ and suppose that there exists a non-negative integer k such that
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Pv(x′, a) = 0 holds for all x′ ∈ V and all a ∈ Ω + k1. Then for any α ∈ Np such that

Eα
a P ∈ Dn−d⟨a,Ea⟩, one has Eα

a Pv(x′, a) = 0 for all x′ ∈ V and all a ∈ Ω.

This assumption is satisfied if v(x′, a) is holomorphic in a which belongs to a shift-

invariant open set Ω by virtue of the uniqueness of analytic continuation, or else if

Ω = Zp.

Definition 6. A left ideal I of Dn⟨a,Ea⟩ is called a holonomic Dn⟨a,Ea⟩-ideal if

µ−1(Dn⟨a,Ea, E
−1
a ⟩I) = {P ∈ Dn+p | µ(P ) ∈ Dn⟨a,Ea, E

−1
a ⟩I}

is a holonomic ideal of Dn+p.

Lemma 3. If a left ideal J of Dn+p is holonomic, then µ(J)∩Dn⟨a,Ea⟩ is a holonomic

Dn⟨a,Ea⟩-ideal.

Proof. It is sufficient to show the inclusion

µ−1(Dn⟨a,Ea, E
−1
a ⟩ (µ(J) ∩Dn⟨a,Ea⟩)) ⊃ J.

If P belongs to J , then there exists a positive integer k such that

Q := Ek
a1

· · ·Ek
ap
µ(P ) = µ(tk1 · · · tkpP ) ∈ Dn⟨a,Ea⟩ ∩ µ(J).

Hence µ(P ) = E−k
s1 · · ·E−k

sp Q belongs to Dn⟨a,Ea, E
−1
a ⟩ (µ(J) ∩Dn⟨a,Ea⟩). This com-

pletes the proof. 2

Now let us describe an algorithm to compute a holonomic difference-differential system

for the integral v(x′, a).

Algorithm 5 (difference-differential equations for an integral).

Input: A set G0 of generators of a holonomic ideal J of Dn+p which annihilate u(x, a)

in the sense that there exists k ∈ N such that Pu(x, a) = 0 holds for any P ∈ G0,

x ∈ V × Rn−d, and a ∈ Ω+ k1.

Output: A set G of generators of a holonomic ideal of Dn−d⟨a,Ea⟩ annihilating the

integral v(x′, a) of (6). That is, Pv(x′, a) = 0 holds for any P ∈ G, x′ ∈ V , and a ∈ Ω.

1. Compute a set G1 of generators of the integration ideal

N0 := Dn−d⟨t, ∂t⟩ ∩ (∂n−d+1Dn+p + · · ·+ ∂nDn+p + J)

of J with respect to xn−d+1, . . . , xn.

2. Let P be an element of G1. Then there exists a minimal ν = (ν1, . . . , νp) ∈ Np such

that Q := Eν
aµ(P ) belongs to Dn−d⟨a,Ea⟩. Let us denote this Q by nm(µ(P )). Set

G := {nm(µ(P )) | P ∈ G1}.

Theorem 2. The left ideal of Dn−d⟨a,Ea⟩ which is generated by G is holonomic and

annihilates v(x′, a) for (x′, a) ∈ V × Ω.

Proof. If P belongs to G1, then there exist Qi ∈ Dn+p and R ∈ J such that

P =

n∑
i=n−d+1

∂xiQi +R.
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There exists ν ∈ Np such that Q := Eν
aµ(P ), Eν

aµ(∂xiQi) and Eν
aµ(R) all belong to

Dn⟨a,Ea⟩. Hence there exists a non-negative integer k such that

Qv(x′, a) =

∫
Rd

Qu(x, a) dxn−d+1 · · · dxn

=

n∑
i=n−d+1

∫
Rd

∂xiE
ν
aµ(Qi)u(x, a) dxn−d+1 · · · dxn = 0

holds for x ∈ V and a ∈ Ω+ k1. It follows from Assumption that µ(P )v(x′, a) = 0 holds
for any a ∈ Ω. The holonomicity of the output follows from Theorem 1 and Lemma 3. 2

As a typical example, let u be a holonomic distribution defined on an open set U of Rn

and f1, . . . , fp ∈ R[x] be polynomials such that the set {x ∈ U | fi(x) > 0 (i = 1, . . . , p)}
is non-empty. We assume that the product u(f1)

s1
+ · · · (fp)

sp
+ is well-defined as distribution

on Rn if s belongs to a shift-invariant open set Ω of Cp. This is the case if u is a locally
integrable function. We set ti = Esi and ∂ti = −siE

−1
si for i = 1, . . . , p in the sequel. The

following algorithm is similar to the one introduced by Walther (1999) for computing
algebrac local cohomology.

Algorithm 6 (Computing differential equations for u(f1)
s1
+ · · · (fp)

sp
+ ).

Input: A set G0 of generators of a holonomic ideal I of Dn annihilating a distribution
u(x), and polynomials f1, . . . , fp ∈ R[x].
Output: A set G of generators of a holonomic ideal J of Dn+p annihilating
u(f1)

s1
+ · · · (fp)

sp
+ .

1. For P = P (x, ∂x1 , . . . , ∂xn) ∈ G0, set

τ(P ) := P

x, ∂x1 +

p∑
j=1

∂fj
∂x1

∂tj , . . . , ∂xn +

p∑
j=1

∂fj
∂xn

∂tj

 .

This substitution is well-defined in the ring Dn+p since the operators which are
substituted for ∂x1

, . . . , ∂xn
commute with each other.

2. Set
G := {τ(P ) | P ∈ G0} ∪ {tj − fj(x) | j = 1, . . . , p}.

Now let us prove the correctness of this algorithm:

Theorem 3. Let J be the left ideal of Dn+p generated by the set

{τ(P ) | P ∈ I} ∪ {tj − fj(x) | j = 1, . . . , p}.

Then J is a holonomic ideal of Dn+p and annihilates u(f1)
s1
+ · · · (fp)

sp
+ .

Proof. First note that J is generated by the set

{τ(P ) | P ∈ G0} ∪ {tj − fj(x) | j = 1, . . . , p}

since τ is a ring homomorphism. Assume that u(x) is C∞. Then in view of the equality

(∂xiu)(f1)
s1
+ · · · (fp)

sp
+ =

∂xi +

p∑
j=1

∂fj
∂xi

∂tj

 (u(f1)
s1
+ · · · (fp)

sp
+ ),
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we have
τ(P )(u(f1)

s1
+ · · · (fp)

sp
+ ) = (Pu)(f1)

s1
+ · · · (fp)

sp
+ = 0 (7)

if P ∈ I and s − ν1 ∈ Ω for sufficiently large ν ∈ N. If u is locally integrable but not
C∞, then (7) makes sense on {x ∈ U | f1(x) · · · fp(x) ̸= 0} since (f1)

s1
+ · · · (fp)

sp
+ is C∞

in x there. We can verify that (7) holds on U by using the same argument as the proof of
Lemma 2.9 of Kashiwara and Kawai (1979). It is easy to see that tj − fj(x) annihilates
u(f1)

s1
+ · · · (fp)

sp
+ . Hence J annihilates u(f1)

s1
+ · · · (fp)

sp
+ .

Let us show that Dn+p/J is holonomic. Since Dn/I is holonomic, its characteristic
variety Char(Dn/I) is an n-dimensional algebraic set of C2n. By the definition, we have

Char(Dn+p/J)

⊂
{
(x, t, ξ, τ) ∈ C2(n+p) | σ(P )

(
x, ξ1 +

p∑
j=1

∂fj
∂x1

τj , . . . , ξn +

p∑
j=1

∂fj
∂xn

τj

)
= 0 (∀P ∈ I),

tj = fj(x) (j = 1, . . . , p)
}

=
{
(x, t, ξ, τ) ∈ C2(n+p) |

(
x, ξ1 +

p∑
j=1

∂fj
∂x1

τj , . . . , ξn +

p∑
j=1

∂fj
∂xn

τj

)
∈ Char(Dn/I),

tj = fj(x) (j = 1, . . . , p)
}
.

Since the set on the last line is in one-to-one correspondence with the set Char(Dn/I)×
Cp, the dimension of Char(Dn+p/J) is n+ p, which implies that Dn+p/J is a holonomic
module. 2

Example 10. As one of the simplest examples, let us consider the gamma function

v(s) = Γ(s+ 1) =

∫ ∞

0

e−xxs dx =

∫ ∞

−∞
e−xxs

+ dx.

Introducing t = Es and ∂t = −sE−1
s , we have a holonomic system

(∂x + ∂t + 1)u = (t− x)u = 0

for u(x, s) := e−xxs
+. Then integrating with respect to x yields a holonomic system

(∂t + 1)v(s) = 0

for u(s), which can be rewritten as

(Es − (s+ 1))v(s) = 0.

Example 11. Set

v(s) =

∫
x3−y2≥0

e−x2−y2

(x3 − y2)s dxdy =

∫
R2

e−x2−y2

(x3 − y2)s+ dxdy,

which is well-defined for s belonging to the set

Ω := {s ∈ C | x ̸= −ν, −5

6
− ν, −7

6
− ν (ν = 1, 2, 3, . . . )}.

The holonomic ideal generated by

−x3 + y2 + t, ∂x + 3∂tx
2 + 2x, ∂y + (−2∂t + 2)y
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annihilates the integrand u(x, s) := e−x2−y2

(x3−y2)s+. The integration ideal of this ideal
is generated by

108t2∂5
t+(−216t2+648t)∂4

t+(108t2−972t+627)∂3
t+(356t−606)∂2

t+(−64t+108)∂t+32t−48.

Hence v(s) satisfies a holonomic difference equation

(−32E4
s + 16(4s+ 13)E3

s + 4(s+ 3)(27s2 + 154s+ 211)E2
s

−6(s+2)(s+3)(36s2+162s+173)Es+3(s+1)(s+2)(s+3)(6s+5)(6s+13))v(s) = 0.

It follows that v(s) is holomorphic (at least) on

Ω′ := {s ∈ C | x ̸= −ν, −5

6
− ν, −13

6
− ν (ν = 1, 2, 3, . . . )}.

Differential equations with parameters can be extracted from the output of the inte-
gration algorithm as follows.

Algorithm 7 (intersection with a subring).
Input: A set G0 of generators of a left ideal J of Dn+p, the ring of differential
operators on the variables (x1, . . . , xn, t1, . . . , tp).
Output: A set G of generators of the left ideal J ∩Dn[s] of Dn[s] under the
identification sj = −∂tj tj for j = 1, . . . , p.

1. Introducing new variables uj , vj for j = 1, . . . , p, let h(P ) ∈ Dn+p[u] be the multi-
homogenization of P ∈ Dn+p; i.e., h(P ) is homogeneous with respect to the weight
−1 for tj and uj , and 1 for ∂tj , for each j.

2. Let N be the left ideal of Dn+p[u, v] generated by the set

{h(P ) | P ∈ G0} ∪ {1− ujvj | j = 1, . . . , p}.

3. Compute a set G1 of generators of the ideal N ∩Dn+p by eliminating u, v via an
appropriate Gröbner basis.

4. Since each element P of G1 is multi-homogeneous without u, v, there exist a mono-
mial S in t, ∂t and an operator Q(s) ∈ Dn[s] such that

SP = Q(−∂t1t1, . . . ,−∂tptp).

Let G be the set of such Q for each P ∈ G1.

The correctness of this algorithm was proved as Proposition 4.3 in Oaku and Takayama
(2001).

Example 12. Consider the definite integral

v(z, s) =

∫
D(t)

(x+ t)s dxdy =

∫
R2

Y (1− x2 − y2)(x+ z)s+ dxdy

with D(z) = {(x, y) ∈ R2 | x2 + y2 ≤ 1, x + z ≥ 0}, which is well-defined at least for
Re s > 0 and for any z ∈ R. We first compute a differential holonomic system for the
integrand in the variables (x, y, z, t) with t = Es and ∂t = −sE−1

s . Then the integration
algorithm outputs the ideal generated by

∂z + ∂t, (z2 − 2tz + t2 − 1)∂t + s− t.
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By computing the intersection with the ring Dz[s] with the identification s = −∂tt, we

get a linear differential equation

((1− z2)∂2
z + (2s+ 1)z∂z − s(s+ 2))v(z, s) = 0.

6. A shortcut for tensor product computation

Let us consider again a definite integral of the form

v(x1, . . . , xn−d) :=

∫
Rd

u(x)Y (f1) · · ·Y (fm) dxn−d+1 · · · dxn

for a holonomic function or distribution u(x). In Section 4, we gave an algorithm to com-

pute a holonomic ideal annihilating the integrand by a tensor product computation. Since

the tensor product computation can often be a bottleneck in the actual computation,

let us describe an alternative method using the technique introduced in the preceding

section.

Algorithm 8 (Computing differential equations for u(f1)
λ1
+ · · · (fp)

λp

+ ).

Input: A set G0 of generators of a holonomic ideal I of Dn annihilating a distribution

u(x), polynomials f1, . . . , fp ∈ R[x], and complex numbers λ1, . . . , λp.

Output: A set G of generators of a holonomic ideal of Dn annihilating

u(f1)
λ1
+ · · · (fp)

λp

+ .

1. Let G1 be the output of Algorithm 6 with input G0 and {f1, . . . , fp}. Let J be the

ideal of Dn+p generated by G1.

2. Compute a set G2 of generators of J ∩Dn[s] with the identification sj = −∂tj tj for

j = 1, . . . , p by using Algorithm 7

3. Set G := {P (λ) | P (s) ∈ G2}.

Theorem 4. The output of the algorithm above generates a holonomic ideal and anni-

hilates u(f1)
λ1
+ · · · (fp)

λp

+ if u(f1)
s1
+ · · · (fp)

sp
+ is well-defined and holomorphic with respect

to s on a neighborhood of s = λ.

Proof. It follows from Theorem 3 and the uniqueness of analytic continuation that G

annihilates u(f1)
λ1
+ · · · (fp)

λp

+ .

SetM := Dn/I. Let us show that J coincides with the annihilator of [1]⊗fs inM⊗C[x]
Dn+pf

s, where [1] denotes the residue class of 1 ∈ Dn in M and fs = (f1)
s1 · · · (fp)sp .

Note that M ⊗C[x] Dn+pf
s has a natural structure of left Dn+p-module.

First, let P be in J . Then there exist Q1, . . . , Ql, . . . , Ql+p ∈ Dn+p and P1, . . . , Pl ∈ I

such that

P =

l∑
i=1

Qiτ(Pi) +

p∑
j=1

Ql+j · (tj − fj(x)).

It follows that

P ([1]⊗ fs) =

l∑
i=1

Qi([Pi]⊗ fs) +

p∑
j=1

Ql+j([1]⊗ (tj − fj(x))f
s) = 0.
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Conversely, suppose that P ∈ Dn+p annihilates [1]⊗fs. We can rewrite P in the form

P =
∑

α∈Nn,ν∈Np

pα,ν(x)
(
∂x1 +

p∑
j=1

∂fj
∂x1

∂tj

)α1

· · ·
(
∂xn +

p∑
j=1

∂fj
∂xn

∂tj

)αn

∂ν
t

+

p∑
j=1

Qj · (tj − fj(x))

with pα,ν(x) ∈ C[x] and Qj ∈ Dn+p. Setting Pν :=
∑

α∈Nn pα,ν(x)∂
α
x , we get

0 = P ([1]⊗ fs) =
∑
ν∈Np

[Pν ]⊗ (∂ν
t f

s) ∈ M ⊗C[x] Dn+pf
s.

It follows that each Pν belongs to I since {∂ν
t f

s} constitute a free basis of Dn+pf
s over

C[x] (See e.g., Lemma 6.11 of Oaku (1997b)). Hence we have

P =
∑
ν∈Np

∂ν
t τ(Pν) +

p∑
j=1

Qj · (tj − fj(x)) ∈ J.

Let us denote by [1] ⊗′ fs the tensor product of [1] ∈ M and fs in M ⊗C[x] Dn[s]f
s

in order to distinguish it from the tensor product [1]⊗ fs in M ⊗C[x] Dn+pf
s. Then the

natural homomorphism of M ⊗C[x]Dn[s]f
s to M ⊗C[x]Dn+pf

s induces a homomorphism

ρ : Dn[s]([1]⊗′ fs) −→ Dn+p([1]⊗ fs) ≃ Dn+p/J

of left Dn[s]-module such that ρ([1]⊗′ fs) = [1]⊗ fs, which corresponds to the modulo

class [1] in Dn+p/J . Moreover we have

ρ(Dn[s](1⊗′ fs)) = Dn[s]/(J ∩Dn[s]) ⊂ Dn+p/J.

Now let fλ be the residue class of fs in

N (λ) := N/(

p∑
j=1

(sj − λj)N ) with N := Dn[s]f
s

and [1]⊗ fλ be the tensor product in Dn ⊗C[x] N (λ). Then ρ induces a surjective homo-

morphism

ρ′ : Dn([1]⊗ fλ) −→ Dn[s]/
(
(J ∩Dn[s]) +

p∑
j=1

(sj − λj)Dn[s]
)

of left Dn-module which sends [1]⊗ fλ to the residue class of 1 ∈ Dn[s].

Let I ′ be the left ideal of Dn generated by the output of Algorithm 8. Then by the

definition we have an isomorphism

Dn/I
′ ≃ Dn[s]/

(
(J ∩Dn[s]) +

p∑
j=1

(sj − λj)Dn[s]
)

as Dn-module. This implies that Dn/I
′ is holonomic since Dn([1]⊗ fλ) is holonomic as

a submodule of the holonomic Dn-module M ⊗C[x] N (λ). 2
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Remark 1. The homomorphisms ρ or ρ′ are not injective in general; for example, set
f = x1x2 and M := Dn/I with I being the left ideal of D2 generated by x1 and ∂2. Then

∂2([1]⊗ fs) = [1]⊗ ∂2f
s = −[1]⊗ x1∂tf

s = −[x1]⊗ ∂tf
s = 0

holds in M ⊗C[x] D2⟨t, ∂t⟩fs but not in M ⊗C[x] D2[s]f
s. The annihilator of [1] ⊗ f0 in

M ⊗C[x] D2f
0 is generated by x1 and x2∂2, while N for λ = 0 is generated by x1 and ∂2.

Example 13. The Bessel function Jν(x) satisfies a holonomic difference-differential sys-
tem

(x2∂2
x + x∂x + x2 − ν2)Jν(x) = (x(E2

ν + 1)− 2(ν + 1)Eν)Jν(x) = 0 (8)

for x ∈ R and ν ∈ C \ {−1,−2, . . . } and holomorphic in ν. Let us consider the integral

v(z, ν, s) :=

∫
D(z)

ysJν(x) dxdy

with D(z) := {(x, y) ∈ R2 | x, y ≥ 0, x2 + y2 ≤ z}. It is easy to verify that Y (x)Jν(x)
also satisfies (8). First we compute a holonomic system for

u(x, y, z, ν, s) := Y (z − x2 − y2)ys+Y (x)Jν(x)

in the ring of differential operators on the variables x, y, z, t1, t2 with t1 = Eν and t2 = Es

by using Algorithm 8. Tensor product computation fails for this example because of
complexity. Then by the integration algorithm, we get a holonomic system for v(z, ν, s) in
the ring of differential operators on the variables z, ν, s. Finally computing the intersection
with the subring Dz[ν, s] we get

(8z2∂3
z + (−8s+ 8)z∂2

z + (2z − 2ν2 + 2s2)∂z − s− 1)v(z, ν, s) = 0,

which has a regular singularity at t = 0 with exponents 1, (±ν+s)/2+1. This differential
equation is valid, at least, for z ∈ R, Re s > −1, and ν ̸= −1,−2, . . . .

Finally we present timing data (in seconds) of the computation of difference equations
in ν for integrals involving Jν(x) by using Risa/Asir running on a computer with 3.06
GHz Core 2 Duo Processor and 8 Gbyte memory. Step 1 refers to the computation of a
holonomic system for the integrand by using Algorithm 8; Step 2 consists of the integra-
tion algorithm (Algorithm 3). Tensor product algorithm does not stop in a reasonable
time period for most of the examples in the table.

integral Step 1 Step 2 total∫
Y (y)Y (1− x− y)Y (x)Jν(x) dxdy 0.08 0.03 0.11∫
Y (y)Y (1− x2 − y2)Y (x)Jν(x) dxdy 0.2 2.2 2.4∫
Y (y)Y (1− x4 − y4)Y (x)Jν(x) dxdy 3.4 346 349∫
Y (y)Y (z)Y (1− x− y − z)Y (x)Jν(x) dxdydz 0.27 0.13 0.4∫
Y (y)Y (z)Y (1− x2 − y2 − z2)Y (x)Jν(x) dxdydz 0.13 2.4 2.5
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