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Abstract

We present an algorithm to compute the annihilator of (i.e., the linear differential
equations for) the multi-valued analytic function fλ(log f)m in the Weyl algebra Dn

for a given non-constant polynomial f , a non-negative integer m, and a complex
number λ. This algorithm essentially consists of the differentiation with respect to s
of the annihilator of fs in the ring Dn[s] and ideal quotient computation in Dn. The
obtained differential equations constitute what is called a holonomic system in D-
module theory. Hence combined with the integration algorithm for D-modules, this
enables us to compute a holonomic system for the integral of a function involving
the logarithm of a polynomial with respect to some variables.

1 Introduction

For a given function u, it is an interesting problem both in theory and in practice to
determine the differential equations which u satisfies. Let us restrict our attention to linear
differential equations with polynomial coefficients. Then our problem can be formulated as
follows: Let Dn be the Weyl algebra, i.e., the ring of differential operators with polynomial
coefficients in the variables x = (x1, . . . , xn). An element P of Dn is expressed as a finite
sum

P =
∑

α,β∈Nn

aα,βx
α∂β (1)

with xα = xα1
1 · · · xαn

n , ∂β = ∂β1

1 · · · ∂βn
n and aα,β ∈ C, where α = (α1, . . . , αn), β =

(β1, . . . , βn) ∈ Nn are multi-indices with N = {0, 1, 2, . . . } and ∂i = ∂/∂xi (i = 1, . . . , n)
denote derivations. The annihilator, or the annihilating ideal, of u in Dn is defined to be

AnnDnu = {P ∈ Dn | Pu = 0},

which is a left ideal of Dn. Since Dn is a non-commutative Noetherian ring, there exist
a finite number of operators P1, . . . , PN ∈ Dn which generate AnnDnu as left ideal. Thus
we can regard the system

P1u = · · · = PNu = 0

of linear differential equations as a maximal one that u satisfies.
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As to systems of linear differential equations, there is a notion of holonomicity, or
being holonomic, which plays a central role in D-module theory. See Appendix A for
a precise definition. A holonomic system of linear differential equations admits only a
finite number of linearly independent solutions although it is not a sufficient condition for
holonomicity. A holonomic function is by definition a function which satisfies a holonomic
system.

The importance of the holonomicity lies in, in addition to the finiteness property above,
the fact that it is preserved under basic operations on functions such as sum, product,
restriction and integration. Hence starting from some basic holonomic functions we can
construct various holonomic functions by using such operations.

As one of basic holonomic functions, let us consider fλ with a non-constant polynomial
f in x = (x1, . . . , xn) and a complex number λ. Then the function fλ is holonomic and
there are algorithms to compute its annihilator strictly ([10],[3],[16]).

Our purpose is to give an algorithm to compute the annihilator of fλ(log f)m with a
positive integer m, or more generally a function of the form

u = ehfλ(g0 + g1 log f + · · ·+ gm(log f)
m)

with polynomials f, h, g0, . . . , gm in x, precisely and to prove that u is a holonomic
function. This is achieved by differentiation with respect to the parameter s of the
annihilator of f s in Dn[s]. This method can be extended to functions of the form
fλ1
1 · · · fλN

N (log f1)
m1 · · · (log fN)mN for polynomials fk, complex numbers λk and nonneg-

ative integers mk.
Since the algorithm yields a holonomic system, we can apply the integration algorithm

for D-modules (see [12], [16], [11]) to get a holonomic system for the integral of a function
involving the logarithm of a polynomial.

2 Annihilator with a parameter

Let f be a non-constant polynomial in n variables x = (x1, . . . , xn) with coefficients in
the field C of the complex numbers. From an algorithmic viewpoint, we assume that the
coefficients of f belong to a computable subfield of C.

First, we consider formal functions of the form f s(log f)k with an indeterminate s.
More precisely, for a non-negative integer m, we introduce the module

L(f,m) :=
m⊕
k=0

C[x, f−1, s]f s(log f)k,

of which f s(log f)k are regarded as a free basis over the ring C[x, f−1, s]. Then L(f,m) has
a natural structure of left Dn[s]-module, which is induced by the action of the derivation
∂j = ∂/∂xj defined by, for a ∈ C[x, f−1, s],

∂j{af s(log f)k} =

(
∂a

∂xj

+ saf−1 ∂f

∂xj

)
f s(log f)k

+ kaf−1 ∂f

∂xj

f s(log f)k−1 (j = 1, . . . , n)

2



if k ≥ 1 and

∂j(af
s) =

(
∂a

∂xj

+ saf−1 ∂f

∂xj

)
f s (j = 1, . . . , n).

In view of this action, it is easy to see that L(f,m)/L(f,m−1) is isomorphic to L(f, 0) =
C[x, f−1, s]f s as a left Dn[s]-module.

Consider the left Dn[s]-submodule

N (f,m) := Dn[s]f
s + · · ·+Dn[s](f

s(log f)m)

of L(f,m). Our purpose is to determine the annihilating module

AnnDn[s](f
s, . . . , f s(log f)m) := {P = (P0, P1, . . . , Pm)

∈ Dn[s]
m+1 |

m∑
k=0

Pk(f
s(log f)k) = 0

}
and the annihilating ideal

AnnDn[s]f
s(log f)m := {P ∈ Dn[s] | P (f s(log f)m) = 0} .

Note that there are isomorphisms

N (f,m) ≃ Dn[s]
m+1/AnnDn[s](f

s, . . . , f s(log f)m),

Dn[s](f
s(log f)m) ≃ Dn[s]/AnnDn[s](f

s(log f)m).

Now let us regard f s(log f)m as a multi-valued analytic function in (x, s) on {(x, s) ∈
Cn+1 | f(x) ̸= 0}. The following lemma is well-known; see, e.g., [4] for a differential-
algebraic proof.

Lemma 1 Let f ∈ C[x] be a non-constant polynomial. Then for ai(x) ∈ C[x],
m∑
i=0

ai(x)(log f)
i = 0

holds as analytic function if and only if ai(x) = 0 for all i.

Proof: We argue by induction on m. In view of the uniqueness of analytic continuation,
we have only to show that each ai(x) vanishes near x0. Let x0 ∈ Cn be a non-singular
point of the hypersurface f(x) = 0. By an analytic local coordinate transformation, we
may suppose that ai(x) are analytic near x0 = 0 and f(x) = x1. That is,

a0(x) + a1(x) log x1 + · · ·+ am(x)(log x1)
m = 0 (2)

holds on a neighborhood U of 0. Fix a point x = (x1, . . . , xn) in U such that x1 ̸= 0. By
analytic continuation along a circle (e

√
−1tx1, x2, . . . , xn) with 0 ≤ t ≤ 2π, the identity (2)

is transformed to

a0(x) + a1(x)(log x1 + 2π
√
−1)

+ · · ·+ am(x)(log x1 + 2π
√
−1)m = 0.
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By subtraction, we get an identity of the form

b0(x) + b1(x) log x1 + · · · bm−1(x)(log x1)
m−1 = 0

with
bm−1(x) = 2mπ

√
−1am(x).

From the induction hypothesis it follows that b0(x) = · · · = bm−1(x) = 0, which implies
am(x) = 0. We are done by induction on m. □

3 Computation of annihilator

Now let us describe an algorithm for computing the annihilator of f s(log f)m.

Algorithm 1 Input: a non-constant polynomial f in the variables x = (x1, . . . , xn) with
coefficients in a computable subfield of C, and a non-negative integer m.

1. Let G = {P1(s), . . . , Pk(s)} be a generating set of the left ideal AnnDn[s]f
s :=

{P (s) ∈ Dn[s] | P (s)f s = 0} by using an algorithm of [10] or [3] (see also [6]).

2. Let
e0 = (1, 0, . . . , 0), . . . , em = (0, . . . , 0, 1)

be the canonical unit vectors of Cm+1. For each i = 1, . . . , k and j = 0, 1, . . . ,m, set

Pi(s)
(j) :=

j∑
ν=0

(
j

ν

)
∂j−νPi(s)

∂sj−ν
eν .

Output: G′ := {Pi(s)
(j) | 1 ≤ i ≤ k, 0 ≤ j ≤ m} generates AnnDn[s](f

s, . . . , f s(log f)m).

Algorithm 2 Input: a non-constant polynomial f in the variables x = (x1, . . . , xn) with
coefficients in a computable subfield of C, and a non-negative integer m.

1. Let G′ be the output of Algorithm 1.

2. Compute a Gröbner basis G′′ of the module generated by G′ with respect to a term
order ≺ for (Dn[s])

m+1 such that Mej ≺ M ′ek for any monomials M and M ′ if
k < j. Let G0 be the set of the last component of each element of G′′.

Output: G0 generates AnnDn[s]f
s(log f)m.

Lemma 2 Let I be a left ideal of Dn[s] generated by
{P1(s), . . . , Pk(s)}. For P (s) ∈ Dn[s] and j ∈ N, set

P (s)(j) :=

j∑
ν=0

(
j

ν

)
∂j−νP (s)

∂sj−ν
eν .

Then the left Dn[s]-submodule of (Dn[s])
m+1 which is generated by {P (s)(j) | P (s) ∈ I, 0 ≤

j ≤ m} coincides with the one which is generated by {Pi(s)
(j) | 1 ≤ i ≤ k, 0 ≤ j ≤ m}

for any integer m ≥ 0.
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Proof: Let N be the left Dn[s]-module generated by {Pi(s)
(j) | 1 ≤ i ≤ k, 0 ≤ j ≤ m}

and P (s) be a nonzero element of I. Then there exist

Qi(s) =

mi∑
l=0

Qils
l (Qil ∈ Dn)

such that P (s) =
∑k

i=1Qi(s)Pi(s). Then we have

P (s)(j) =
k∑

i=1

mi∑
l=0

Qil(s
lPi(s))

(j).

Hence we have only to show that (slPi(s))
(j) belongs to N . This can be done as follows:

(slPi(s))
(j) =

j∑
ν=0

(
j

ν

)(
∂

∂s

)j−ν

(slPi(s))eν

=

j∑
ν=0

(
j

ν

)min{j−ν,l}∑
µ=0

(
j − ν

µ

)
(l)µs

l−µ

×
(

∂

∂s

)j−ν−µ

Pi(s)eν

=

min{j,l}∑
µ=0

(
j

µ

)
(l)µs

l−µ

j−µ∑
ν=0

(
j − µ

ν

)

×
(

∂

∂s

)j−µ−ν

Pi(s)eν

=

min{j,l}∑
µ=0

(
j

µ

)
(l)µs

l−µPi(s)
(j−µ),

where (l)µ := l(l − 1) · · · (l − µ+ 1). □

Theorem 1 The output of Algorithm 1 coincides with AnnDn[s](f
s, . . . , f s(log f)m).

Proof: Let P (s) belong to AnnDn[s]f
s. Differentiating the equation P (s)f s = 0 with

respect to s, we get
j∑

ν=0

(
j

ν

)
∂j−νPi(s)

∂sj−ν
(f s(log f)ν) = 0

for 0 ≤ j ≤ m. This shows that each Pi(s)
(j) annihilates (f s, . . . , f s(log f)m).

Set M := AnnDn[s](f
s, . . . , f s(log f)m). Let N be the left Dn[s]-module generated by

the output G′ of Algorithm 1. The argument above shows that N is a left Dn-submodule
of M. Hence we have only to prove N = M. For this purpose let Nj be the left
Dn[s]-module generated by {Pi(s)

(ν) | 1 ≤ i ≤ k, 0 ≤ ν ≤ j} and set

Mj := {(Q0, Q1, . . . , Qm) ∈ M | Qν = 0 if ν > j}.
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Let Q(s) = (Q0(s), . . . , Qj(s), 0, . . . , 0) be an element of Mj. Then

j∑
ν=0

Qν(s)(f
s(log f)ν) = 0

holds. In view of the action ofDn[s] on L(f, j) noted in Section 2, this impliesQj(s)f
s = 0.

Hence Qj(s)
(j) belongs to Nj by Lemma 2. It is easy to see that Q(s)−Qj(s)

(j) belongs
to Mj−1. This means Mj = Nj+Mj−1 for 1 ≤ j ≤ m. Then we can show that Nj = Mj

holds for 1 ≤ j ≤ m by induction on j noting N0 = M0. □
The correctness of Algorithm 2 follows immediately.

Remark 1 If f is weighted homogeneous, i.e., if there exist rational numbers wi such
that

∑n
i=1 wixi∂i(f) = f , then Dn[s]f

s(log f)m is isomorphic to N (f,m) as left Dn[s]-
module. Namely, the homomorphism of Dn to (Dn)

m+1 which sends 1 to em induces an
isomorphism

Dn[s]/AnnDn[s]f
s(log f)m

≃ (Dn[s])
m+1/AnnDn[s](f

s, . . . , f s(log f)m)

of left Dn[s]-module. In fact, this follows from the relations(
n∑

i=1

wixi∂i − s

)
(f s(log f)k) = kf s(log f)k−1 (k ≥ 1).

4 Specialization of parameter

Let us fix a complex number λ. (From an algorithmic viewpoint, we assume λ lies in a
computable subfield of the field C.) We set

L(f,m, λ) :=
m∑
k=0

C[x, f−1]fλ(log f)k,

where fλ(log f)k constitute a free basis over C[x, f−1] in view of Lemma 1. Substituting
λ for s gives L(f,m, λ) a natural structure of left Dn-module. In fact, one has

∂j{afλ(log f)k} =

(
∂a

∂xj

+ λaf−1 ∂f

∂xj

)
fλ(log f)k

+ kaf−1 ∂f

∂xj

fλ(log f)k−1 (j = 1, . . . , n)

for k ≥ 1 and

∂j(af
λ) =

(
∂a

∂xj

+ λaf−1 ∂f

∂xj

)
fλ (j = 1, . . . , n)

with a ∈ C[x, f−1]. This implies that L(f,m, λ)/L(f,m−1, λ) is isomorphic to L(f, 0, λ) =
Dnf

λ as a left Dn-module.
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Set
N (f,m, λ) := Dnf

λ + · · ·+Dn(f
λ(log f)m).

We define the annihilators of (fλ, . . . , fλ(log f)m) and of fλ(log f)m to be

AnnDn(f
λ, . . . , fλ(log f)k) := {P = (P0, P1, . . . , Pm)

∈ (Dn)
m+1 |

m∑
k=0

Pk(f
λ(log f)k) = 0},

AnnDnf
λ(log f)m := {P ∈ Dn | P (fλ(log f)m) = 0},

respectively. Then we have isomorphisms

N (f,m, λ) ≃ (Dn)
m+1/AnnDn(f

λ, . . . , fλ(log f)k),

Dn(f
λ(log f)m) ≃ Dn/AnnDn(f

λ(log f)m).

In the sequel, we need information on some roots of the Bernstein-Sato polynomial or
the b-function of f , which is, by definition, the monic polynomial bf (s) of the least degree
such that a formal functional equation

P (s)f s+1 = bf (s)f
s (3)

holds with some P (s) ∈ Dn[s]. The existence of such a functional equation was proved
by Bernstein [1]. It was proved by Kashiwara [5] that the roots of bf (s) = 0 are negative
rational numbers. An algorithm to compute bf (s) and an associated operator P (s) was
given in [9]. The following theorem generalizes a result of Kashiwara [5, Proposition 6.2]:

Theorem 2 Let λ be a complex number such that bf (λ− ν) ̸= 0 for any positive integer
ν. Then we have

AnnDn(f
λ, . . . , fλ(log f)k)

= {P (λ) | P (s) ∈ AnnDn[s](f
s, . . . , f s(log f)k)},

AnnDnf
λ(log f)m = {P (λ) | P (s) ∈ AnnDn[s]f

s(log f)m}.

Proof: We have only to show the first equality. Assume that
∑m

k=0 Pk(f
λ(log f)k) = 0

holds with Pk ∈ Dn. Then there exist a non-negative integer l ≥ 0 and polynomials
ak(x, s) ∈ C[x, s] such that

m∑
k=0

Pk(f
s(log f)k) = (s− λ)

m∑
k=0

ak(x, s)f
s−l(log f)k.

By using the functional equation (3), we can find an operator Q(s) ∈ Dn[s] such that

bf (s− 1) · · · bf (s− l)f s−l = Q(s)f s.
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In view of the action of Dn[s] on L(f,m), there exist a polynomial a′k(x, s) in x, s and a
non-negative integer l1 such that

bf (s− 1) · · · bf (s− l)f s−l(log f)m = Q(s){f s(log f)m}

+
m−1∑
k=0

a′k(x, s)f
s−l1(log f)k.

Proceeding inductively, we conclude that there exist a polynomial b(s) ∈ C[s] which is a

product (possibly with multiplicities) of bf (s− j) with j ≥ 1 and operators Q̃k(s) ∈ Dn[s]
such that

b(s)
m∑
k=0

ak(x, s)f
s−l(log f)k =

m∑
k=0

Q̃k(s){f s(log f)k}.

Hence

P̃ (s) := b(s)
m∑
k=0

Pkek − (s− λ)
m∑
k=0

Q̃k(s)ek

belongs to AnnDn[s](f
s, . . . , f s(log f)k) and

b(λ)
m∑
k=0

Pkek = P̃ (λ).

This completes the proof since b(λ) ̸= 0 by the assumption. □
If bf (λ− ν) = 0 for some positive integer ν, then set

ν0 := max{ν ∈ Z | ν > 0, bf (λ− ν) = 0}

and λ0 := λ− ν0. Then λ0 satisfies the condition of Theorem 2. Hence for (P0, . . . , Pm) ∈
(Dn)

m+1, we have

(P0, . . . , Pm) ∈ AnnDn(f
λ, . . . , fλ(log f)k)

⇔ (P0f
ν0 , . . . , Pmf

ν0) ∈ AnnDn(f
λ0 , . . . , fλ0(log f)k)

⇔ (P0, . . . , Pm) ∈ AnnDn(f
λ0 , . . . , fλ0(log f)k) : f ν0 .

To give an algorithm for the module quotient in a more general setting, let us define
the componentwise product of two elements P = (P0, . . . , Pm) and Q = (Q0, . . . , Qm) of
(Dn)

m+1 to be PQ := (P0Q0, . . . , PmQm). Let N be a left Dn-submodule of (Dn)
m+1 and

P = (P0, . . . , Pm) ∈ (Dn)
m+1 with Pi ̸= 0 for 0 ≤ i ≤ m. Then the module quotient N : P

is defined to be
N : P := {Q ∈ (Dn)

m+1 | QP ∈ N},

which is a left Dn-submodule of (Dn)
m+1.

Algorithm 3 Input: A set G1 of generators of a left Dn-submodule N of (Dn)
m+1 and

P = (P0, . . . , Pm) ∈ (Dn)
m+1 with Pi ̸= 0 for 0 ≤ i ≤ m.
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1. Introducing a new variable t, compute a Gröbner basis G2 of the left Dn[t]-module
of (Dn[t])

m+1 which is generated by {(1 − t)Pkek | 0 ≤ k ≤ m} ∪ {tQ | Q ∈ G1}
with respect to a term order ≺ such that xα∂βej ≺ tek for any j, k ∈ {0, 1, . . . ,m}
and α, β ∈ Nn.

2. G3 := G2 ∩ (Dn)
m+1.

3. G4 := {Q/P | Q ∈ G3}, where Q/P denotes the element in (Dn)
m+1 such that

(Q/P )P = Q in the sense of componentwise product.

Output: G4 generates the module quotient N : P .

In fact, we can show in the same way as in the commutative case that G3 generates
the left module N ∩ (Dn)

m+1P . In particular, for each Q ∈ G3, there exists a unique
Q′ ∈ (Dn)

m+1 such that Q = Q′P . Let us denote this Q′ by Q/P . Then Q′ belongs to
the quotient module N : P . Conversely, if Q′ belongs to N : P , then Q′P belongs to
N ∩ (Dn)

m+1P . Hence Q′ belongs to the module generated by G4. In our experiments,
Algorithm 3 outperforms an alternative method based on syzygy computation.

Summed up, the annihilators of (fλ((log f)k)0≤k≤m and of (fλ(log f)m are computed
as follows:

Algorithm 4 Input: a non-constant polynomial f in the variables x = (x1, . . . , xn) with
coefficients in a computable subfield of C, a number λ which belongs to a computable
subfield of C, and a non-negative integer m.

1. Compute a set G1 of generators of

AnnDn[s](f
s, . . . , f s((log f)k)

by Algorithm 1.

2. Compute bf (s) ([9], [10], [3]) and let ν0 be the largest positive integer ν such that
bf (λ− ν) = 0 if there is any such ν. Set ν0 = 0 if none.

3. Set λ0 := λ− ν0 and G2 := G1|s=λ0 (substitute λ0 for s in each element of G1).

4. If ν0 > 0, then let G3 be a set of generators of the module quotient ⟨G2⟩ : f ν0 =
⟨G2⟩ : (f ν0 , . . . , f ν0), where ⟨G2⟩ denotes the left module generated by G2.

5. If ν0 = 0, then set G3 := G2.

6. Compute a Gröbner basis G4 of the module generated by G3 with respect to a term
order ≺ for (Dn)

m+1 such that Mej ≺ M ′ek for any monomials M and M ′ if k < j.
Let G5 be the set of the last component of each element of G4.

Output: G3 generates AnnDn(f
λ, . . . , fλ(log f)m); G5 generates AnnDnf

λ(log f)m.

Remark 2 In the step 2 of Algorithm 4, we need information only on the roots of the
b-function of the form λ − ν with ν ∈ N. Hence without computing bf (s) itself, one can
employ a method of [6] to check if a given number is a root of the b-function by virtue of
the fact that the roots of bf (s) are greater than −n ([15]).
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Algorithm 5 Input: a non-constant polynomial f and polynomials g0, . . . , gm, h in x =
(x1, . . . , xn) with coefficients in a computable subfield of C, a number λ which belongs to
a computable subfield of C, and m ∈ N.

1. Compute a set of generators of

N := AnnDn(f
λ, . . . , fλ(log f)m)

by using Algorithm 4.

2. Compute a set G1 of generators of the left ideal I := {P ∈ Dn | P (g0, . . . , gm) ∈ N}
by a module quotient computation similar to Algorithm 3.

3. Set G2 := {ehPe−h | P ∈ G1}, where ehPe−h ∈ Dn is obtained by substituting
∂i − ∂h/∂xi for ∂i (1 ≤ i ≤ n) in P .

Output: G2 generates AnnDnu with

u := ehfλ(g0 + g1 log f + · · ·+ gm(log f)
m).

Theorem 3 In the preceding algorithm, Dnu = Dn/I is holonomic.

Proof: SinceDn ∋ P 7→ ehPe−h induces an isomorphism of the characteristic varieties (see
Appendix A), we may assume h = 0. It is well-known that Dnf

λ is holonomic ([1],[2]).
Since L(f,m, λ)/L(f,m − 1, λ) is isomorphic to L(f, 0, λ) = Dnf

λ as left Dn-module,
L(f,m, λ) is also holonomic by induction on m. Hence Dnu is holonomic as a submodule
of L(f,m, λ). □

5 Logarithm as distribution

So far, we have studied fλ(log f)m as a multi-valued analytic function outside f = 0.
Hence, in the real domain Rn, the computation in the preceding section is valid only on
Uf := {x ∈ Rn | f(x) > 0}. Otherwise, we can regard it as a distribution (a generalized
function of L. Schwartz) fλ

+(log f+)
m defined on the whole Rn through the ‘paring’

⟨fλ
+(log f+)

m, φ⟩ =
∫
Uf

f(x)λ(log f(x))mφ(x) dx

with an arbitrary C∞ function φ which satisfies

sup
x∈Rn

|xα∂βφ(x)| < ∞ (∀α, β ∈ Nn).

The integral above is well-defined only for Re λ ≥ 0, but as a distribution it can be
analytically continued to C with respect to λ with possible poles. It is easy to show the
following:

Proposition 1 If P (s) ∈ Dn[s] annihilates f
s(log f)m, then for λ ∈ C, P (λ) annihilates

fλ
+(log f+)

m as long as fλ
+ is well-defined as distribution. Moreover, Dnf

λ
+(log f+)

m is
holonomic.
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6 Implementation and examples

By using the algorithms presented so far, we can compute the annihilator of fλ(log f)m

following the diagram

AnnDn[s]f
s

↓ (a)

AnnDn[s](f
s, . . . , f s(log f)m)

(c1)
→ AnnDn[s]f

s(log f)m

↓ (b1) ↓ (c2)

AnnDn(f
λ, . . . , fλ(log f)m)

(b2)
→ AnnDnf

λ(log f)m

We have implemented the algorithms in a computer algebra system Risa/Asir [7], which
is capable of Gröbner basis computation of modules over the ring of differential operators
as well as over the ring of polynomials. The algorithm as a whole largely depends on the
computation of AnnDn[s]f

s and (some roots of) the b-function. Once they are computed,
the rest of the computation consists of elimination ((b2) or (c1)) and quotient ((b1) or
(c2)) computation for a module over, or an ideal of, the Weyl algebra, which can be the
heavier part if m is large. Note that step (a) is straightforward. There are two paths
to reach AnnDnf

λ(log f)m: (a)→(b1)→(b2) or (a)→(c1)→(c2). Which path is the more
efficient seems to depend on the input.

Example 1 Let f be a square-free polynomial in one variable x with complex coefficients.
Since AnnD1[s]f

s is generated by f∂ − sf ′, AnnD1[s](f
s, . . . , f s(log f)m) is generated by

m+ 1 elements

(f∂x − sf ′, 0, · · · , 0), (−f ′, f∂x − sf ′, 0, · · · , 0),
· · · , (0, · · · , 0,−mf ′, f∂x − sf ′)

with ∂x = d/dx and f ′ = df/dx.
Since bf (s) = s+1, the substitution s = λ gives generators of AnnD1(f

λ, . . . , fλ(log f)m)
if λ ̸= 0, 1, 2, . . . . In particular,

AnnD1(f
−1, . . . , f−1(log f)m)

is generated by

(f∂x + f ′, 0, · · · , 0), (−f ′, f∂x + f ′, 0, · · · , 0),
· · · , (0, · · · , 0,−mf ′, f∂x + f ′).

Since f and f ′ are relatively prime, it is easy to see that

AnnD1(1, . . . , (log f)
m)

= AnnD1(f
−1, . . . , f−1(log f)m) : f

is generated by

(∂x, 0, · · · , 0), (−f ′, f∂x, 0, · · · , 0),
· · · , (0, · · · , 0,−mf ′, f∂x).

11



Explicit generators of AnnD1(log f)
m for m ≥ 1 would be complicated: For example, if

f = x2 + 1 and m = 2, step (b2) gives three generators

P1 = x2(x2 + 1)2∂3
x + (3x5 − 3x)∂2

x + (x4 + 3)∂x,

P2 = x(x2 + 1)2∂4
x + (9x4 + 8x2 − 1)∂3

x + 16x3∂2
x + 4x2∂x,

P3 = (x2 + 1)2∂5
x + 14x(x2 + 1)∂4

x + (52x2 + 16)∂3
x

+ 52x∂2
x + 8∂x

of AnnD1(log f)
2, which is not generated by a single element. If one works in the ring of

differential operators with rational function coefficients, then the annihilator of (log f)2

is generated by P1 since we have

xP2 = ∂xP1, x3P3 = (x∂2
x − ∂x)P1.

Example 2 Set
f = xy2 + z2

with n = 3, (x1, x2, x3) = (x, y, z), ∂x = ∂/∂x and so on. First AnnD3[s]f
s is generated by

y∂y + z∂z − 2s, −2x∂x + y∂y,
2z∂x − y2∂z, z∂y − xy∂z,

from which we obtain a set of generators of

AnnD3[s](f
s, f s log f, f s(log f)2).

Since the Bernstein-Sato polynomial of f is bf (s) = (s + 1)2(2s + 3), the substitution
s = −1 gives a set of generators of AnnD3(f

−1, f−1 log f, f−1(log f)2). Then by module
quotient computation and elimination in the free module (D3)

3, we get a set of generators

2x∂x − y∂y, 2z∂x − y2∂z, z∂y − yx∂z,

y∂3
y + (2z∂z + 3)∂2

y + zx∂3
z + x∂2

z

of AnnD3(log f)
2.

The table below shows timing data for the computation of the annihilator of AnnDn(log f)
m

measured on a computer equipped with 1.7 GHz Intel Core i5 processor and 4 GB mem-
ory. The computation is done along the path (a)→(b1)→(b2), in which (b2) is the most
time-consuming part.

f m = 2 m = 4 m = 8 m = 16
xy2 + z2 0.02s 0.04s 0.14s 2.1s

xy2 + z2 + 1 0.04s 0.31s 20.8s –
x3 + xy2 + z2 0.04s 0.12s 1.6s 586s
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7 Examples of integrals

Example 3 Consider the integral

u(t) :=

∫ ∞

−∞
e−tx2+x(log(x2 + 1))2 dx

for t > 0. It is easy to compute the annihilator of the integrand from that of (log(x2+1))2,
which is generated by P1, P2, P3 of Example 1. Then executing the D-module theoretic in-
tegration algorithm (Algorithm 6 in Appendix B) by using a library file ‘nk restriction’
of Risa/Asir, we get a differential equation Pu(t) = 0 with a differential operator P of
order 7. If we use only P1 as annihilator of (log(x2 + 1))2, then we get Qu(t) = 0 with a
differential operator Q of order 9. The equation Qu(t) = 0 is weaker than Pu(t) = 0. This
shows an advantage of working with differential operators with polynomial coefficients not
with rational function coefficients.

An alternative way to compute this integral is to first compute differential equations
for the integral

v(s, t) :=

∫ ∞

−∞
e−tx2+x(x2 + 1)s dx

with a parameter s. By using an algorithm described in [11], we get P (s)v(s, t) = 0 with

P (s) = 4t2∂3
t + (−8t2 + (8s+ 18)t+ 1)∂2

t

+ (4t2 + (−8s− 20)t+ 4s2 + 14s+ 10)∂t + 2t− 2s− 3.

Differentiation with respect to s and substitution s = 0 yield

P (0)v(0, t) = P ′(0)v(0, t) + P (0)v′(0, t)

= P ′′(0)v(0, t) + 2P ′(0)v′(0, t) + P (0)v′′(0, t) = 0,

where ′ denotes differentiation with respect to s. Then by eliminating v(0, t) and v′(0, t),
we get a differential equation Rv′′(t, 0) = Ru(t) = 0 with a differential operator R of order
9, which is weaker than Pu(t) = 0 above but essentially different from Qu(t) = 0.

Example 4 Set

u(x) :=

∫
R2

e−y2−z2(log(xy2 + z2 + 1))2 dydz

for x > 0. Then by the integration algorithm, we get a differential equation Pu(x) = 0
with

P = 16x4(x− 1)2∂7
x + 16x2(x− 1)(29x2 − 17x− 2)∂6

x

+ (4504x4 − 5336x3 + 896x2 + 240x+ 16)∂5
x

+ (17712x3 − 14220x2 + 540x+ 288)∂4
x

+ (27153x2 − 12348x− 441)∂3
x

+ (12915x− 2205)∂2
x + 945∂x.

The computation of the integral takes about 4.3 seconds.
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Example 5 Set

u(x) :=

∫
R2

e−y2−z2(log(xy2 + z2))2 dydz

for x > 0. Since f := xy2 + z2 vanishes if y = z = 0, we must regard (log f)2 as a
distribution on R2 with respect to (y, z) with a parameter x. A holonomic system for
(log f)2 regarded as such is obtained by the substitution s = 0 from the annihilator of
f s(log f)2 in D3[s], which is weaker than the annihilator of (log f)2 as analytic function.
From this we get a differential equation Pu(x) = 0 with

P = 8x3(x− 1)3∂6
x + 12x2(x− 1)2(13x− 7)∂5

x

+ (926x4 − 1926x3 + 1218x2 − 218x)∂4
x

+ (1911x3 − 3107x2 + 1369x− 125)∂3
x

+ (1155x2 − 1360x+ 325)∂2
x + (105x− 75)∂x.

The computation of the integral takes about 0.51 seconds.

Example 6 Let us consider the integral

u(x) :=

∫ 1

0

(log(x2 + xy + y2))2 dy

for x ̸= 0. Following an algorithm presented in [11], we rewrite the integral as

u(x) =

∫ ∞

−∞
Y (y)Y (1− y)(log(x2 + xy + y2))2 dy

by using the Heaviside function Y (t), which takes the value 1 if t > 0 and 0 otherwise.
Then by the integration algorithm for D-modules we get Pu(x) = 0 with

P = x2(x2 + x+ 1)2

× (8x7 + 24x6 + 56x5 + 76x4 + 86x3 + 43x2 + 6x− 2)∂5
x

+ (terms of order ≤ 4).

The whole computation takes about 2.0 seconds.

A Holonomic systems

Let us recall the definition of a holonomic system introduced by [17] (see also [2]). Let P
be a nonzero differential operator written in the form (1) and define its order by

m := ord(P ) := max{|β||aα,β ̸= 0 (∃α)}.

Then the principal symbol of P is the polynomial defined by

σ(P )(x, ξ) =
∑
|β|=m

∑
α

aα,βx
αξβ,
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where ξ = (ξ1, . . . , ξn) are the commutative variables corresponding to the derivations
∂ = (∂1, . . . , ∂n).

Set M := Dn/I with a left ideal I of Dn. The left Dn-module M represents a system

Pu = 0 (∀P ∈ I)

of differential equations for an unknown function u. The characteristic variety of M is
defined to be the algebraic set

Char(M) := {(x, ξ) ∈ C2n | σ(P )(x, ξ) = 0

for any P ∈ I \ {0}}

of C2n. It was proved in [17] that the dimension of every irreducible component of
Char(M) is not less than n unless M = 0. Hence M is called holonomic if and only
if the dimension of Char(M) is n or else M = 0. The characteristic variety can be com-
puted via a Gröbner basis with respect to a term order which is compatible with the
(0,1)-weight with respect to (x, ∂) (cf. [8]). Once the defining ideal σ(I) ⊂ C[x, ξ] of
the characteristic variety is computed, its dimension is known by the Hilbert function of
C[x, ξ]/σ(I).

Holonomicity is preserved under operations such as sum, product, restriction to affine
subvarieties, and integration with respect to some of the variables (cf. [1], [2]) and they
are computable (see [13], [16], [11]). Let Rn := C(x)⟨∂1, . . . , ∂n⟩ be the ring of differential
operators with rational function coefficients. A Dn-module M is said to be of finite rank
and the dimension is called the rank of M if RnM is a finite dimensional vector space
over C(x). A holonomic Dn-module M is of finite rank but the converse is not true in
general.

Example 7 Set f = xy2 + z2 and consider the function f−1. It is easy to see that the
operators

f∂x + fx = (xy2 + z2)∂x + y2,

f∂y + fy = (xy2 + z2)∂y + 2xy,

f∂z + fz = (xy2 + z2)∂z + 2z

annihilate f−1 with fx = ∂f/∂x, etc. The left ideal J generated by these three oper-
ators coincides with the annihilator of f−1 in R3 but D3/J is not holonomic since the
characteristic variety of D3/J is

Char(D3/J) = {(x, y, z; ξ, η, ζ) ∈ C6 | xy2 + z2 = 0}
∪ {ξ = η = ζ = 0},

which is of codimension one. The true annihilator I of f−1 is generated by

y∂y + z∂z + 2, −2x∂x + y∂y,
2z∂x − y2x∂z, z∂y − xy∂z,
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and the characteristic variety of D3/I is given by

Char(D3/I) = {x = y = z = 0} ∪ {y = z = ξ = 0}
∪ {ξ = η = ζ = 0} ∪ {y2x+ z2 = zη − yxζ = 2zξ − y2ζ

= η2 + xζ2 = yη + zζ = 2xξ + zζ = η2 + xζ2 = 0},

which implies that D3/I is holonomic.

There is an algorithm for a given Dn-module M of finite rank to construct a holonomic
Dn-module M̃ and a surjective Dn-homomorphism of M to M̃ ([14],[18]). In particular,
if the annihilator I = AnnRnu of an analytic function u in Rn is known and Rn/I is
of finite dimension over C(x), then the annihilator AnnDnu is computable by using the
‘Weyl closure algorithm’ of [18]. For example, one can compute the annihilator AnnDnu
of u := ef/g for arbitrary polynomials f, g starting from a finite rank system

(g2∂i − fig + fgi)u = 0 (1 ≤ i ≤ n)

with fi = ∂f/∂xi, gi = ∂g/∂xi, which constitutes the annihilator of u in Rn.

B Integration algorithm

We shall briefly recall the D-module theoretic integration algorithm. Let I be a left ideal
of Dn+d which annihilates a function u(x, t) in (x, t) = (x1, . . . , xn, t1, . . . , td), where Dn+d

denotes the Weyl algebra in (x, t). (We keep the notation Dn for the Weyl algebra in x.)
Suppose that the integral

v(x) :=

∫
Rd

u(x, t) dt1 · · · dtd

is well-defined for x ∈ U with some open set U of Rn. In the sequel, we use the notation
∂xi

= ∂/∂xi, ∂tj = ∂/∂tj and

∂x = (∂x1 , . . . , ∂xn), ∂t = (∂t1 , . . . , ∂td).

The integration ideal of a left ideal I of Dn+d is defined to be the left ideal∫
I dt := (∂t1Dn+d + · · ·+ ∂tdDn+d + I) ∩Dn

of Dn. It is easy to see that Pv(x) = 0 holds for all x ∈ U and P ∈
∫
I dt. Moreover, it

follows from the D-module theory (see e.g., [2]) that Dn/
∫
I dt is holonomic if Dn+d/I is

so. The following algorithm was essentially given in [12], [13], [16]:

Algorithm 6 Input: A set G0 of generators of a left ideal I of Dn+d such that Dn+d/I
is holonomic.

1. Compute a Gröbner basis G1 of I with respect to a monomial order which is com-
patible with the weight vector w = (0, . . . , 0, 1, . . . , 1; 0, . . . , 0,−1, . . . ,−1) for the
variables (x, t, ∂x, ∂t).
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2. Compute the b-function of I with respect to w, which is a nonzero univariate poly-
nomial b(s) of the minimum degree such that b(−∂t1t1 − · · · − ∂tdtd) + P belongs to
I with some P ∈ Dn+d of order ≤ −1 with respect to the weight vector w. This
can be done by computing the intersection of the left ideal of Dn+d generated by
the w-initial parts of G1, with the subring C[∂t1t1 + · · ·+ ∂tdtd].

3. Let k1 be the maximum integral root of b(s) = 0 if any; if there is none or else
k1 < 0, then set G := {1} and quit.

4. For P ∈ G1 and α ∈ Nd such that ordw(P ) + |α| ≤ k1, one has an expression of the
form

tαP =
d∑

j=1

∂tjQj +
∑
|β|≤k1

Rβt
β

with Qj ∈ Dn+d and unique Rβ ∈ Dn. Set χ(tαP ) :=
∑

|β|≤k1
Rβt

β. Let N be the

left Dn-submodule of
⊕

|β|≤k1
Dnt

β generated by

{χ(tαP ) | P ∈ G1, |α|+ ordw(P ) ≤ k1}.

5. Compute a set G of generators of the ideal N ∩Dn.

Output: G generates
∫
I dt and Dn/

∫
I dt is holonomic.

In this algorithm, steps 1 and 2 often cause a bottleneck. If we use an arbitrary subset
G1 of I instead of the step 1 and an arbitrary integer k1 ≥ 0 irrespective of the b-function,
then this algorithm outputs a subideal of the integration ideal. This provides us with a
heuristic integration algorithm.

References
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