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Abstract

We define the notion of a minimal filtered free resolution for a filtered module
over the ring D(h), a homogenization of the ring D of analytic differential operators.
This provides us with analytic invariants attached to a (bi)filtered D-module. We
also give an effective argument using a generalization of the division theorem in
D(h) due to Assi-Castro-Granger (2001), by which we obtain an upper bound for
the length of minimal filtered resolutions.
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In this paper, we study finite type left modules over the ring D of germs of analytic
differential operators at the origin of Cn. Such modules M admit a finite length free
resolution

· · · → Dr2 → Dr1 → Dr0 →M → 0.

Free resolutions are a basic tool for studying D-modules. For example, in order to compute
the restriction or the local cohomology of a D-module, we need a free resolution adapted
to the V-filtration (see e.g. [OT1]).

However, such resolutions are not unique and it is difficult to define the notion of
minimal (filtered) resolution of a D-module directly. For this purpose, we first introduce
in Section 1 the homogenized ring of differential operators D(h) after [ACG]. This is a
graded ring, which is, in fact, nothing else but the Rees ring for the filtration of D by the
usual order of operators. We define the notion of a graded minimal free resolution of a
graded D(h)-module in Section 1.

In Section 2, we consider filtered graded D(h)-modules with respect to a general weight
vector (u, v) ∈ Z2n for the variables x and the corresponding derivations ∂. Then we
define the notion of a (u, v)-filtered graded minimal free resolution for such a module. We
prove the existence and uniqueness of minimal resolutions by using in both (non-filtered
and filtered) cases a graded (resp. a bigraded) version of Nakayama’s lemma in a way
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inspired by [E]. In particular, a minimal V-filtered resolution of the local cohomology
group supported by t = f(x) provides us with a set of numerical invariants attached to
the divisor defined by a germ f of analytic function (see Examples 2.11 and 2.12).

In Section 3 we show how to come back from D(h)-modules to D-modules. The de-
homogenization gives an equivalence between the category of graded (resp. (u, v)-filtered
graded) D(h)-modules having no h-torsion and the category of D-modules equipped with a
good filtration with respect to the usual order (resp. a good bifiltration with respect to the
usual order and the (u, v)-order). Therefore we obtain, by dehomogenizing the previously
obtained resolution, a finite free (resp. a (u, v)-filtered free) resolution which is canonically
attached to any D-module equipped with such a filtration (resp. a bifiltration).

In Section 4, we prove a generalization to submodules of (D(h))r of the division theorem
proved in [ACG] for ideals in D(h). Combined with Schreyer’s method, this division
theorem enables us to construct a filtered free resolution of any (u, v)-filtered graded
D(h)-module M ′ of finite type. We then obtain the result that any such M ′ admits a
(u, v)-filtered graded free resolution of length ≤ 2n + 1. We conclude this section by
a description of the minimalization process which allows us to obtain a minimal free
resolution from the Schreyer resolution. Therefore, an arbitrary minimal (resp. minimal
(u, v)-filtered) resolution turns out to be of length ≤ 2n+ 1.

If the moduleM is defined by algebraic data, i.e., by operators with polynomial coeffi-
cients, then the computation of a minimal filtered resolution can be done in a completely
algorithmic way by generalizing Mora’s tangent cone algorithm to D(h). This topic will
be discussed elsewhere. An algebraic counterpart of minimal filtered resolution and its
algorithm were considered in [OT2] without uniqueness result.

We acknowledge the financial support by the University of Angers, France, and JSPS,
Japan, which made this collaboration possible.

1 Minimal free resolutions of D(h)-modules

We denote by D the ring of germs of analytic linear differential operators (of finite order)
at the origin of Cn. Fixing the canonical coordinate system x = (x1, . . . , xn) of Cn, we
can write an element P of D in a finite sum P =

∑
β∈Nn aβ(x)∂

β with aβ(x) belonging to

C{x}, the ring of convergent power series. Here we use the notation ∂β = ∂β11 · · · ∂βnn with
∂i = ∂/∂xi and β = (β1, . . . , βn) ∈ Nn, where N = {0, 1, 2, . . . }.

Following Assi-Castro-Granger [ACG], we introduce the homogenized ring D(h) of D
as follows (in [ACG] it is denoted D[t]): Introducing a new variable h, we define the
homogenization of P ∈ D above to be

P (h) :=
∑
β

aβ(x)∂
βhm−|β| with m = ordP := max{|β| = β1 + · · ·+ βn | aβ(x) ̸= 0}.

We regard this operator as an element of the ring D(h), which is the C-algebra generated
by C{x}, ∂1, . . . , ∂n, and h with the commuting relations

ha = ah, h∂i = ∂ih, ∂i∂j = ∂j∂i, ∂ia− a∂i =
∂a

∂xi
h
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for any a ∈ C{x} and i, j ∈ {1, . . . , n}.
Note that D(h) is isomorphic to the Rees ring of D with respect to the order filtration,

i.e., the filtration by the degree in ∂ of operators, and is (left and right) Noetherian. The
ring D(h) is a non-commutative graded C-algebra with the grading

D(h) =
⊕
d≥0

(D(h))d with (D(h))d :=
⊕

|β|+k=d

C{x}∂βhk.

An element P of (D(h))d is said to be homogeneous of degree degP := d. A left D(h)-
module M is a graded D(h)-module if M is written as a direct sum M = ⊕k∈ZMk of
C{x}-modules such that (D(h))dMk ⊂Mk+d holds for any k, d. If M is finitely generated,
there exists an integer k0 such that Mk = 0 for k ≤ k0. Let M and N be graded left
D(h)-modules. Then a map ψ : M → N is a homomorphism of graded D(h)-modules (of
degree 0) if ψ is D(h)-linear and satisfies ψ(Mi) ⊂ Ni for any i ∈ Z.

The ring D(h) has a unique maximal graded two-sided ideal

I(h) := (C{x}x1 + · · ·+ C{x}xn)⊕
⊕
d≥1

(D(h))d.

The quotient ring D(h)/I(h) is isomorphic to C.

Lemma 1.1 (Nakayama’s lemma for D(h)) Let M be a finitely generated graded left
D(h)-module. Then I(h)M =M implies M = 0.

Proof: SupposeM ̸= {0} and let {f1, . . . , fr} be a minimal set of homogeneous generators
of M . Since fr ∈ M = I(h)M , there exist homogeneous P1, . . . , Pr ∈ I(h) such that
fr = P1f1 + · · ·+ Prfr, which implies

(1− Pr)fr = P1f1 + · · ·+ Pr−1fr−1.

By the homogeneity, Pr belongs to (D(h))0 ∩I(h) = C{x}x1+ · · ·+C{x}xn. Hence 1−Pr
is invertible in D(h), which contradicts the minimality of the generating set. □

In view of this lemma, the classical theory of minimal free resolutions for modules over
a local ring extends to graded left D(h)-modules.

By a graded free D(h)-module L of rank r, we mean a graded D(h)-module

L = (D(h))r[n] :=
⊕
d∈Z

(
(D(h))d−n1 ⊕ · · · ⊕ (D(h))d−nr

)
with an n = (n1, . . . , nr) ∈ Zr, which we call the shift vector for L. The unit vectors
(1, 0, . . . , 0), · · · , (0, . . . , 0, 1) ∈ L are called the canonical generators of L. An element
P = (P1, . . . , Pr) of (D(h))r[n] is said to be homogeneous of degree deg[n](P ) = d if each
Pi is homogeneous of degree d− ni.

Definition 1.2 (minimal free resolution) Let M be a graded free left D(h)-module.
An exact sequence

· · · → L2
ψ2−→ L1

ψ1−→ L0
ψ0−→M → 0
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of graded left D(h)-modules, where Li is a graded free D(h)-module of rank ri, is called a
minimal free resolution of M if the maps in the induced complex

· · · → (D(h)/I(h))⊗D(h) L2 −→ (D(h)/I(h))⊗D(h) L1 −→ (D(h)/I(h))⊗D(h) L0

(of C-vector spaces) are all zero; i.e., the entries of ψi (i ≥ 1) regarded as a matrix belong
to I(h). By Nakayama’s lemma, this is equivalent to the condition that the images by ψi
of the canonical generators of Li is a minimal generating set of the kernel of ψi−1, or of
M if i = 0, for each i ≥ 0. We call the ranks r0, r1, . . . the Betti numbers of M .

A minimal free resolution exists and is unique up to isomorphism. This follows from
Nakayama’s lemma as in the case with a local ring (see e.g., Theorem 20.2 of [E]). In
particular, the Betti numbers and the associated shift vectors (up to permutation of their
components) are invariants of M .

Example 1.3 In two variables (x1, x2) = (x, y), let I(h) be the left ideal of D(h) generated
by

x3 − y2, 2x∂x + 3y∂y + 6h, 3x2∂y + 2y∂x

with ∂x = ∂/∂x, ∂y = ∂/∂y and put M := D(h)/I(h). Its dehomogenization D/(I(h)|h=1)
(see Section 3) is the local cohomology group supported by x3 − y2 = 0. A minimal free
resolution of M is given by

0 → (D(h))2[(1, 1)]
ψ2−→ (D(h))3[(0, 1, 1)]

ψ1−→ D(h) ψ0−→M → 0

with ψ0 being the canonical projection and

ψ1 =

 x3 − y2

2x∂x + 3y∂y + 6h
3x2∂y + 2y∂x

 , ψ2 =

(
−2∂x x2 −y
3∂y y −x

)
.

2 Minimal filtered free resolutions of D(h)-modules

We call (u, v) = (u1, . . . , un, v1, . . . , vn) ∈ Z2n a weight vector if ui + vi ≥ 0 and ui ≤ 0
hold for i = 1, . . . , n. For an element P of D(h) of the form

P =
∑

k≥0,α,β∈Nn

aαβkx
α∂βhk (aαβk ∈ C),

where the sum is finite with respect to k and β, we define the (u, v)-order of P by

ord(u,v)(P ) := max{⟨u, α⟩+ ⟨v, β⟩ | aαβk ̸= 0 for some k}

with ⟨u, α⟩ = u1α1 + · · · + unαn. We also define the (u, v)-order of P ∈ D in the same
way. (If P = 0, we define its (u, v)-order to be −∞.) Then the (u, v)-filtrations of D and
D(h) are defined by

F
(u,v)
k (D) := {P ∈ D | ord(u,v)(P ) ≤ k}, F

(u,v)
k (D(h)) := {P ∈ D(h) | ord(u,v)(P ) ≤ k}
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for k ∈ Z.
For a C-subspace I of D or of D(h), put Fk(I) := F

(u,v)
k (D) ∩ I or F

(u,v)
k (D(h)) ∩ I

respectively, and define
gr

(u,v)
k (I) := F

(u,v)
k (I)/F

(u,v)
k−1 (I).

Then the graded rings with respect to the (u, v)-filtration are defined by

gr(u,v)(D) :=
⊕
k∈Z

gr
(u,v)
k (D), gr(u,v)(D(h)) :=

⊕
k∈Z

gr
(u,v)
k (D(h)).

For an element P of F
(u,v)
k (D) or of F

(u,v)
k (D(h)), we denote by σ(u,v)(P ) = σ

(u,v)
k (P ) the

residue class of P in gr
(u,v)
k (D) or in gr

(u,v)
k (D(h)), and call it the (u, v)-principal symbol

of P .
The ring gr(u,v)(D(h)) is Noetherian and has a structure of bigraded C-algebra

gr(u,v)(D(h)) =
⊕
d≥0

⊕
k∈Z

gr
(u,v)
k ((D(h))d).

A nonzero element of gr
(u,v)
k ((D(h))d) is called bihomogeneous of bidegree (d, k). In general,

if I is a graded left ideal of D(h), then gr(u,v)(I) :=
⊕

k∈Z gr
(u,v)
k (I) is a bigraded left ideal

of gr(u,v)(D(h)) with respect to the bigraded structure. In particular, gr(u,v)(I(h)) is the
unique maximal bigraded (two-sided) ideal of gr(u,v)(D(h)). We can define the notion of a
minimal free resolution of a bigraded gr(u,v)(D(h))-module by virtue of the following

Lemma 2.1 (Nakayama’s lemma for gr(u,v)(D(h))) Let M ′ be a finitely generated bi-
graded left gr(u,v)(D(h))-module. Then gr(u,v)(I(h))M ′ =M ′ implies M ′ = 0.

Proof: Let {f1, . . . , fr} be a minimal generating set of M ′ consisting of bihomogeneous
elements. Then there exist bihomogeneous elements P1, . . . , Pr of gr(u,v)(I(h)) such that
fr = P1f1 + · · ·+ Prfr, which implies

(1− Pr)fr = P1f1 + · · ·+ Pr−1fr−1.

By the bihomogeneity, Pr belongs to

gr
(u,v)
0 (I(h) ∩ (D(h))0) = gr

(u,v)
0 (C{x}x1 + · · ·+ C{x}xn) =

j∑
i=1

C{x1, · · · , xj}xi

if e.g., ui = 0 for 1 ≤ i ≤ j and ui < 0 for j < i ≤ n. Hence 1 − Pr is invertible. This
contradicts the minimality. □

For a graded leftD(h)-moduleM = ⊕d∈ZMd, a family {Fk(M)}k∈Z of C{x}-submodules
of M satisfying

Fk(M) ⊂ Fk+1(M),
∪
k∈Z

Fk(M) =M, F
(u,v)
l (D(h))Fk(M) ⊂ Fk+l(M)

Fk(M) =
⊕
d∈Z

Fk(Md) with Fk(Md) := Fk(M) ∩Md (k, l, d ∈ Z)
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is called a (graded) (u, v)-filtration of M . The graded module of M associated with this
filtration is a bigraded left gr(u,v)(D(h))-module defined by

gr(M) :=
⊕
k∈Z

grk(M) =
⊕
d≥0

⊕
k∈Z

grk(Md),

grk(M) := Fk(M)/Fk−1(M), grk(Md) := Fk(Md)/Fk−1(Md).

A nonzero element of grk(Md) is said to be bihomogeneous of bidegree (d, k). For an
element f of M , we put ord(u,v)f := inf{k ∈ Z | f ∈ Fk(M)}.

A (u, v)-filtration {Fk(M)}k∈Z on a graded D(h)-module M is said to be good if there
exist homogeneous elements f1, . . . , fr of M and integers m1, . . . ,mr such that

Fk(M) = F
(u,v)
k−m1

(D(h))f1 + · · ·+ F
(u,v)
k−mr

(D(h))fr (∀k ∈ Z).

Then gr(M) is finitely generated. A (good) filtration of a left D-module and the associated
graded module are defined in the same way, but without assuming any homogeneity for
M and fi.

By assigning m = (m1, . . . ,mr) ∈ Zr, which we call a shift vector for the (u, v)-
filtration, we define good filtrations on Dr and on (D(h))r by

F
(u,v)
k [m](Dr) := {(P1, . . . , Pr) ∈ Dr | ord(u,v)(Pi) +mi ≤ k (i = 1, . . . , r)},

F
(u,v)
k [m]((D(h))r) := {(P1, . . . , Pr) ∈ (D(h))r | ord(u,v)(Pi) +mi ≤ k (i = 1, . . . , r)}

respectively. For an element P = (P1, . . . , Pr) of (D(h))r, we put

ord(u,v)[m](P ) := min{k ∈ Z | P ∈ F
(u,v)
k [m]((D(h))r)}

and denote by σ(u,v)[m](P ) = σ
(u,v)
k [m](P ) the residue class of P ∈ F

(u,v)
k [m]((D(h))r) in

gr
(u,v)
k [m]((D(h))r) := F

(u,v)
k [m]((D(h))r)/F

(u,v)
k−1 [m]((D(h))r).

The free modules Dr and (D(h))r equipped with these filtrations are called (u, v)-
filtered free modules. For a (u, v)-filtered free module L = (D(h))r with the above filtra-
tion, we put

Fk(L) := F
(u,v)
k [m]((D(h))r) (k ∈ Z).

The graded free module L = (D(h))r[n] equipped with this filtration is called a (u, v)-
filtered graded free module and denoted by L = (D(h))r[n][m] in order to explicitly refer
to the shift vectors.

Definition 2.2 (minimal filtered free resolution) LetM be a graded leftD(h)-module
with a (u, v)-filtration {Fk(M)}k∈Z. Then a (u, v)-filtered free resolution of M is an exact
sequence

· · · → L2
ψ2−→ L1

ψ1−→ L0
ψ0−→M → 0 (2.1)

of graded left D(h)-modules with (u, v)-filtered graded free D(h)-modules Li which induces
an exact sequence

· · · → Fk(L2)
ψ2−→ Fk(L1)

ψ1−→ Fk(L0)
ψ0−→ Fk(M) → 0
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for any k ∈ Z. Then (2.1) induces an exact sequence

· · · → gr(L2)
ψ2−→ gr(L1)

ψ1−→ gr(L0)
ψ0−→ gr(M) → 0 (2.2)

of bigraded gr(u,v)(D(h))-modules. The filtered free resolution (2.1) is called a minimal
(u, v)-filtered free resolution of M if (2.2) is a minimal free resolution of gr(M).

This last condition means that, as a matrix, all entries of ψi (i ≥ 1) belong to
gr(u,v)(I(h)) or equivalently that the image of the set of canonical generators of gr(Li)
is a minimal set of generators of Kerψi−1 for i ≥ 0, and of gr(M) for i = 0. The existence
of a minimal bigraded free resolution as (2.2) can be proved exactly in the same way as
in the non-filtered case of Section 1, by using Lemma 2.1.

Note that a minimal (0,1)-filtered free resolution with (0,1) = (0, . . . , 0, 1, . . . , 1) is
simply a minimal free resolution. The main purpose of the rest of this section is to prove
the existence and uniqueness of minimal filtered free resolutions. With this aim in mind,
we first show fundamental properties of the (u, v)-filtration. The following lemma will
play an essential role in our arguments:

Lemma 2.3 Let N be a graded submodule of a (u, v)-filtered graded free module L :=
(D(h))r[n][m] equipped with the induced filtration Fk(N) := N ∩ Fk(L). Suppose that
P1, . . . , Pl are homogeneous elements of N such that

gr(N) = gr(u,v)(D(h))σ(u,v)[m](P1) + · · ·+ gr(u,v)(D(h))σ(u,v)[m](Pl).

Then, for any P ∈ N , there exist Qi ∈ D(h) such that

P =
l∑

i=1

QiPi, ord(u,v)(Qi) + ord(u,v)[m](Pi) ≤ ord(u,v)[m](P ) (i = 1, . . . , l).

Proof: Put k := ord(u,v)[m](P ). We may assume that P belongs to the degree d component
Nd = Ld ∩N , which is a C{x}-submodule of the free C{x}-module Ld of finite rank. Let
us consider the C{x}-submodule

N ′
d :=

{
l∑

i=1

AiPi

∣∣∣∣∣ Ai is homogeneous of degree d− degPi and ord(u,v)[m](AiPi) ≤ k

}
of Nd. Using the assumption we can deduce that

P ∈
∩
j≥0

(Fk−j(Ld) +N ′
d).

Put I := F
(u,v)
−1 (C{x}). Then I is a proper ideal of the local ring C{x} and IF−i(Ld) =

F−i−1(Ld) holds for i large enough. Hence the Krull intersection theorem implies∩
j≥0

(Fk−j(Ld) +N ′
d) = N ′

d.

This completes the proof. □
In particular, this lemma implies that the (u, v)-filtration is Noetherian, or satisfies

the Artin-Rees property:
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Lemma 2.4 Let M be a graded D(h)-module with a good (u, v)-filtration {Fk(M)}k∈Z.
Then, for any graded submodule N of M , the induced filtration Fk(N) := Fk(M) ∩ N is
also good.

Proof: We can take a graded free D(h)-module L and a filtered graded homomorphism ψ :
L →M such that ψ(Fk(L)) = Fk(M). Put N ′ := ψ−1(N) and Fk(N

′) := Fk(L)∩N ′. We
can choose homogeneous elements P1, . . . , Pr′ of N

′ whose residue classes generate gr(N ′).
Let ψ′ : (D(h))r

′ → N ′ be the graded homomorphism (with respect to an appropriate
shift vector for L′ := (D(h))r

′
) satisfying ψ′(ei) = Pi, where e1, . . . , er′ are the canonical

generators of L′. Then with the (u, v)-filtration on L′ defined by an appropriate shift
vector, we have ψ′(Fk(L′)) ⊂ Fk(N

′) and ψ′ induces a surjective map ψ′ : gr(L′) →
gr(N ′). Applying Lemma 2.3 to P1, . . . , Pr′ , we get ψ′(Fk(L′)) = Fk(N

′). This implies
ψ(ψ′(Fk(L′))) = ψ(Fk(N

′)) = Fk(N). □
We might be able to follow the standard arguments on filtered modules, especially

on Noetherian and Zariskian filtered modules as is presented, e.g., in [Sch], in order to
prove the following key proposition; in fact, the (u, v)-filtration is not Zariskian, but is
‘graded Zariskian’. However, we choose to be self-contained below since in the proof of
Proposition 1.1.3 d) of [Sch] (p. 55), it seems that ϕ(Lk) is assumed to be closed without
proof.

Proposition 2.5 Let M0,M1,M2 be (u, v)-filtered graded D(h)-modules and assume that
the filtration of M1 is good. Consider a complex

M2
ψ2−→M1

ψ1−→M0, (2.3)

where ψ1 and ψ2 are filtered graded homomorphisms. Under these assumptions, if the
induced complex

gr(M2)
ψ2−→ gr(M1)

ψ1−→ gr(M0)

is exact, then the complex (2.3) is filtered exact; i.e., the sequence

Fk(M2)
ψ2−→ Fk(M1)

ψ1−→ Fk(M0)

is exact for any k ∈ Z.

Proof: Let N be the kernel of ψ1 with the filtration {Fk(N)}k∈Z induced by that on M1.
Since this filtration is good by Lemma 2.4, there is a filtered graded free module L and
a homomorphism φ : L → N such that φ(Fk(L)) = Fk(N) holds for any k ∈ Z. Let
e1, . . . , er be the canonical generators of L with ord(u,v)ei = mi and put fi := φ(ei).

Since the image of ψ2 is contained in N , we can regard ψ2 as a homomorphism ψ2 :
M2 → N . Then by the exactness of the graded complex we have Imψ2 = Kerψ1 ⊃
gr(Kerψ1), and consequently ψ2 : gr(M2) → gr(N) is surjective. Hence there exists gi ∈
Fmi

(M2) such that its residue class gi in grmi
(M2) satisfies ψ2(gi) = f i, and consequently

ψ2(gi)− fi belongs to Fmi−1(N) = φ(Fmi−1(L)). It follows that there exist homogeneous

Pij ∈ F
(u,v)
mi−mj−1(D(h)) such that

ψ2(gi) = fi +
r∑
j=1

Pijfj (i = 1, . . . , r).
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Let ψ : L → M2 and ψ′
2 : L → L be the homomorphisms such that ψ(ei) = gi and

ψ′
2(ei) = ei+

∑r
j=1 Pijej respectively. Then ψ and ψ′

2 are filtered graded homomorphisms
which make the diagram

L
ψ′
2−−−→ L

ψ

y φ

y
M2

ψ2−−−→ N

commutative. Since ψ′
2 induces the identity map gr(L) → gr(L), we have ψ′

2(Fk(L)) =
Fk(L) in view of Lemma 2.3. Hence we get

Fk(N) = φ(Fk(L)) = (φ ◦ ψ′
2)(Fk(L)) = (ψ2 ◦ ψ)(Fk(L)) ⊂ ψ2(Fk(M2)),

which implies ψ2(Fk(M2)) = Fk(N) = Fk(M1) ∩Kerψ1. This completes the proof. □
This proposition immediately implies the following criterion for filtered free resolution:

Proposition 2.6 LetM be a graded left D(h)-module with a good (u, v)-filtration {Fk(M)}k∈Z.
Assume that

· · · → L3
ψ3−→ L2

ψ2−→ L1
ψ1−→ L0

ψ0−→M → 0 (2.4)

is a complex of (u, v)-filtered graded left D(h)-modules, i.e., satisfying ψi ◦ ψi+1 = 0 and
ψi(Fk(Li)) ⊂ Fk(Li−1) (here we put L−1 = M) for any i ≥ 0 and k ∈ Z, with filtered
graded free modules L0,L1, · · · (of finite type). Then the complex (2.4) is a filtered free
resolution of M if and only if the complex

· · · → gr(L3)
ψ3−→ gr(L2)

ψ2−→ gr(L1)
ψ1−→ gr(L0)

ψ0−→ gr(M) → 0

induced by (2.4) is exact.

Proposition 2.7 (lifting) LetM be a graded left D(h)-module with a good (u, v)-filtration
{Fk(M)}k∈Z. Let L0 be a (u, v)-filtered graded free D(h)-module and ψ0 : L0 → M be a
graded D(h)-homomorphism such that ψ0(Fk(L0)) ⊂ Fk(M) for any k ∈ Z. Suppose that
there exist (u, v)-filtered graded free D(h)-modules Li for i ≥ 1 and a graded free resolution

· · · → gr(L3)
φ3−→ gr(L2)

φ2−→ gr(L1)
φ1−→ gr(L0)

φ0−→ gr(M) → 0 (2.5)

of gr(M), where φ0 coincides with the homomorphism induced by ψ0. Then there exist
filtered graded homomorphisms ψi : Li → Li−1 for i ≥ 1 which induce φi and make the
sequence

· · · → L3
ψ3−→ L2

ψ2−→ L1
ψ1−→ L0

ψ0−→M → 0

a filtered free resolution of M .

Proof: First we construct ψ1. Applying Proposition 2.5 to the sequence L0 → M → 0,
we know that ψ0(Fk(L0)) = Fk(M) holds for any k ∈ Z. Let e1, . . . , er1 be the canonical
generators of L1 with ej ∈ Fmj

(L1)\Fmj−1(L1). For each j, we can choose a homogeneous

element Pj of Fmj
(L0) whose residue class P j in gr(L0) coincides with the image φ1(ej) of
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the residue class ej of ej in gr(L1). Then P j belongs to Kerφ0 since φ0(P j) = φ0(φ1(ej)) =
0. This implies

ψ0(Pj) ∈ Fmj−1(M) = ψ0(Fmj−1(L0)).

Hence there exists a homogeneous element Qj of Fmj−1(L0) such that ψ0(Pj − Qj) = 0.

Let ψ1 : L1 → L0 be the graded D(h)-homomorphism such that ψ1(ej) = Pj − Qj for
j = 1, . . . , r1. Then ψ1 is a filtered homomorphism with ψ0 ◦ψ1 = 0 which induces φ1. In
view of Proposition 2.5, the sequence

Fk(L1)
ψ1−→ Fk(L0)

ψ0−→ Fk(M) → 0

is exact for any k ∈ Z. In the same way, we can successively construct filtered graded
homomorphisms ψi : Li → Li−1 for i ≥ 2 which induce φi such that ψi(Fk(Li)) =
Fk(Li−1) ∩Kerψi−1 for any k. This completes the proof. □

Lemma 2.8 Let L and L′ be (u, v)-filtered graded free D(h)-modules and ψ : L → L′ be
a filtered graded homomorphism. Let ψ : gr(L) → gr(L′) be the induced bigraded homo-
morphism. Then ψ is a filtered isomorphism, i.e., an isomorphism satisfying ψ(Fk(L)) =
Fk(L′) for any k ∈ Z, if and only if ψ induces an isomorphism

ψ : gr(L)/gr(I(h))gr(L) −→ gr(L′)/gr(I(h))gr(L′)

of C-vector spaces.

Proof: We have only to prove the ‘if’ part. Assume ψ is an isomorphism. Then we have

gr(I(h))(gr(L′)/Imψ) = (gr(I(h))gr(L′) + Imψ)/Imψ = gr(L′)/Imψ.

This implies Imψ = gr(L′) in view of Lemma 2.1, and consequently that ψ is filtered
surjective in view of Proposition 2.5. Hence we can define a filtered graded homomorphism

ψ′ : L′ → L such that ψ ◦ ψ′ is the identity on L′. In particular, ψ′ is injective. Since ψ

is a C-isomorphism, so is ψ′. By the same argument as above, we can prove that ψ′ is
surjective. Thus ψ is a filtered isomorphism. □

Theorem 2.9 (existence and uniqueness of minimal filtered resolutions) LetM
be a graded left D(h)-module with a good (u, v)-filtration {Fk(M)}k∈Z. Then there exists a
minimal filtered free resolution

· · · → L3
ψ3−→ L2

ψ2−→ L1
ψ1−→ L0

ψ0−→M → 0

of M . Moreover, a minimal filtered free resolution of M is unique up to isomorphism;
i.e., if

· · · → L′
3

ψ′
3−→ L′

2

ψ′
2−→ L′

1

ψ′
1−→ L′

0

ψ′
0−→M → 0

is another minimal (u, v)-filtered free resolution of M , then there exist filtered graded
D(h)-isomorphisms θi : Li → L′

i, i.e., a graded D(h)-isomorphism (of degree 0) satisfying
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θi(Fk(Li)) = Fk(L′
i) for any k ∈ Z, such that the diagram

· · · →L3
ψ3−−−→ L2

ψ2−−−→ L1
ψ1−−−→ L0

ψ0−−−→ M

θ3

y θ2

y θ1

y θ0

y ∥∥∥
· · · →L′

3

ψ′
3−−−→ L′

2

ψ′
2−−−→ L′

1

ψ′
1−−−→ L′

0

ψ′
0−−−→ M

is commutative.

Proof: First, let us prove the existence. Since gr(M) is finitely generated, we can take
homogeneous f1, . . . , fr0 ∈ M such that their residue classes minimally generate gr(M).
Let L0 be the (u, v)-filtered graded free module of rank r0 with appropriate shifts so that
the homomorphism ψ0 : L0 →M which sends the canonical generators of L0 to f1, . . . , fr0
is graded and filtered. Starting with the bigraded homomorphism φ0 induced by ψ0, we
can construct a minimal bigraded free resolution

· · · → gr(L3)
φ3−→ gr(L2)

φ2−→ gr(L1)
φ1−→ gr(L0)

φ0−→ gr(M) → 0.

Then Proposition 2.7 assures the existence of a minimal (u, v)-filtered free resolution of
M which induces the resolution of gr(M) above.

Now let us prove the uniqueness. We construct a filtered graded isomorphism θi : Li →
L′
i by induction on i. Assume that we have already constructed filtered isomorphisms

θ0, . . . , θi. Then we have a commutative diagram

Li+1
ψi+1−−−→ Li

ψi−−−→ Li−1

θi

y θi−1

y
L′
i+1

ψ′
i+1−−−→ L′

i

ψ′
i−−−→ L′

i−1

Here, for i < 0, we put L−1 =M , L−2 = 0 with θ−1 being the identity map of M .
Let e1, . . . , eri+1

be the canonical generators of Li+1 with ord(u,v)(ej) = mj. Then we
have

θi(ψi+1(ej)) ∈ Kerψ′
i ∩ Fmj

(L′
i) = ψ′

i+1(Fmj
(L′

i+1)).

Hence there exists a homogeneous element Pj of Fmj
(L′

i+1) such that ψ′
i+1(Pj) = θi(ψi+1(ej)).

Let θi+1 : Li+1 → L′
i+1 be the filtered graded homomorphism defined by θi+1(ej) = Pj

for j = 1, . . . , ri+1. Then ψ′
i+1 ◦ θi+1 = θi ◦ ψi+1 holds. In the same way, we can define

a filtered graded homomorphism θ′i+1 : L′
i+1 → Li+1 such that ψi+1 ◦ θ′i+1 = θ−1

i ◦ ψ′
i+1.

Denoting by 1Li+1
the identity map of Li+1, we get

ψi+1 ◦ (1Li+1
− θ′i+1 ◦ θi+1) = ψi+1 − θ−1

i ◦ θi ◦ ψi+1 = 0.

Hence denoting by θi+1 and θ
′
i+1 the induced homomorphisms between gr(Li+1) and

gr(L′
i+1), we have

Im (1gr(Li+1) − θ
′
i+1 ◦ θi+1) ⊂ Kerψi+1 = Imψi+2 ⊂ gr(I(h))gr(Li+1).
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This implies that θ
′
i+1◦θi+1 induces the identity endomorphism of gr(Li+1)/gr(I(h))gr(Li+1).

In the same way, we can show that θi+1 ◦ θ
′
i+1 induces the identity endomorphism of

gr(L′
i+1)/gr(I(h))gr(L′

i+1). In particular, θi+1 induces an isomorphism

θi+1 : gr(Li+1)/gr(I(h))gr(Li+1) −→ gr(L′
i+1)/gr(I(h))gr(L′

i+1).

Using Lemma 2.8, we conclude that θi+1 is a filtered isomorphism. This completes the
proof. □

Corollary 2.10 For a graded D(h)-module M with a good (u, v)-filtration, the rank ri, the
shifts ni and mi attached to the i-th free module Li in a minimal (u, v)-filtered resolution
of M are unique (up to permutation of the components of each shift).

Proof: Consider a (u, v)-filtered graded free module L = (D(h))r[n][m] withm = (m1, . . . ,mr)
and n = (n1, . . . , nr). The bigraded structure of gr(L) makes gr(L)/gr(I(h))gr(L) a bi-
graded C-vector space with respect to the bigrading C = ⊕i,jCi,j of C with C0,0 = C and
(C)i,j = 0 for (i, j) ≠ (0, 0). With respect to this bigraded structure, we have

dimC(gr(L)/gr(I(h))gr(L))i,j = ♯{k ∈ {1, . . . , r} | nk = i, mk = j}.

This implies that r, n, m remain unchanged under a filtered graded isomorphism up to
permutation of the components in view of Lemma 2.8. □

As an application, let us take a germ f(x) of analytic function at 0 ∈ Cn and let I be
the left ideal generated by t − f(x), ∂i + (∂f/∂xi)∂t (i = 1, . . . , n) with ∂i = ∂/∂xi and
∂t = ∂/∂t in the ring D(h) for the n+1 variables (t, x). Consider the graded D(h)-module
M := D(h)/I = D(h)δ(t − f), where δ(t − f) is the residue class of 1. Note that the
dehomogenization M |h=1 is the local cohomology group supported by t− f = 0.

Put (u, v) = (−1, 0, . . . , 0; 1, 0, . . . , 0), which corresponds to the V-filtration with re-

spect to t = 0. Then M has a good V-filtration Fk(M) := F
(u,v)
k (D(h))δ(t− f) for k ∈ Z.

This filtered module M is uniquely determined up to isomorphism by the divisor defined
by f . In fact, if a(x) is a germ of analytic function with a(0) ̸= 0, then δ(t− a(x)f(x)) is
transformed to a(x)−1δ(t′ − f(x′)) by the coordinate transformation t′ = a(x)−1t, x′ = x,
which preserves the V-filtration. Hence the ranks and the shift vectors (up to permuta-
tion) are invariants of the divisor defined by f . The following examples were computed
by using software kan/sm1 [T].

Example 2.11 Using the variables (t, x, y), put f = x3−y2. Then a minimal (−1, 0, 0; 1, 0, 0)-
filtered free resolution of M := D(h)δ(t− f) is given by

0 → D(h)[n3][m3]
ψ3−→ (D(h))5[n2][m2]

ψ2−→ (D(h))5[n1][m1]
ψ1−→ D(h)[n0][m0]

ψ0−→M → 0

with shift vectors

n0 = (0), n1 = (1, 0, 1, 1, 1), n2 = (1, 1, 2, 1, 1), n3 = (2),
m0 = (0), m1 = (1, 0, 1, 0, 0), m2 = (0, 0, 1, 1, 1), m3 = (1).
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The homomorphisms are given by the following matrices (ψ0 is the canonical projection):

ψ1 =


−2y∂t + ∂y
−x3 + y2 + t
3x2∂t + ∂x

3x2∂y + 2y∂x
−6t∂t − 2x∂x − 3y∂y − 6h

 , ψ2 =


0 −2∂x 2t y x2

3t −3∂y 0 −x −y
∂x 0 −∂y ∂t 0

−3x2 0 −2y 1 0
3y 6∂t 2x 0 1

 ,

ψ3 =
(
−6y∂t + 3∂y, −6x2∂t − 2∂x, −6x3 + 6y2 + 6t, −6t∂t − 2x∂x − 3y∂y − 5h,

−3x2∂y − 2y∂x

)
.

The underlined parts constitute the induced homomorphisms ψi. Since the b-function of
x3 − y2 has −1 as the only integer root, we get a minimal free resolution of Example
1.3 by restricting the above resolution to t = 0 by using ((0,1)-homogenized version of)
Algorithms 5.4 and 7.3 of [OT1].

Example 2.12 The ranks of minimal V-filtered resolutions of D(h)δ(t− f) for several f
of three variables x, y, z are as follows:

f r0 r1 r2 r3 r4 r5
xyz 1 7 12 7 1 0
x3 + y3 + z3 1 8 12 7 2 0
x3 + y2z2 1 8 13 8 2 0

3 Minimal filtered free resolutions of D-modules

The aim of this section is to study minimal filtered free resolutions of D-modules. The
main result is that for a D-module with a good ((0,1), (u, v))-bifiltration, its ‘minimal’
bifiltered free resolution can be defined uniquely up to isomorphism, via homogenization.
Note that the (u, v)-filtrations on D-modules are more delicate than those on D(h)-modules
so that the arguments in the preceding section do not work in general.

The notion of a good bifiltration was introduced, for example, in [Sa], [LM]. The
results below should be more or less ‘well-known to specialists’, but we did not find them
explicitly stated in the literature.

3.1 Correspondence between (0,1)-filtered D-modules and graded
D(h)-modules

For an element P =
∑

β,k aβk(x)∂
βhk of D(h), we define its dehomogenization to be the

element ρ(P ) := P |h=1 =
∑

β,k aβk(x)∂
β of D. This defines a surjective ring homomor-

phism
ρ : D(h) ∋ P 7−→ P |h=1 ∈ D,

which gives D a structure of two-sided D(h)-module. Let M ′ = ⊕d∈ZM
′
d be a graded

left D(h)-module of finite type. Then we define its dehomogenization to be ρ(M ′) :=
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D⊗D(h)M ′ as a left D-module. Moreover, ρ(M ′) has a good (0,1)-filtration (with (0,1) =
(0, . . . , 0; 1, . . . , 1) ∈ Z2n) defined by

F
(0,1)
k (ρ(M ′)) := 1⊗M ′

k := {1⊗ f ∈ D ⊗M ′
k | f ∈M ′

k} (k ∈ Z) (3.1)

in view of the relations P ⊗ f = 1 ⊗ (P (h)f) and degP (h) = ordP for P ∈ D. For a
graded homomorphism ψ :M ′ → N ′ of graded left D(h)-modules, 1⊗ ψ : ρ(M ′) → ρ(N ′)
is a filtered D-homomorphism with the filtrations defined above. If M ′ and N ′ are free
modules, then 1⊗ ψ is obtained by the substitution ψ|h=1 of the matrix ψ. This defines
a functor ρ from the category of graded D(h)-modules of finite type, to the category of
D-modules with good (0,1)-filtrations.

A converse functor is given by the construction of so-called Rees modules. With a
commutative variable T , the Rees ring of D with respect to the (0,1)-filtration is defined
to be the C-algebra

R(0,1)(D) :=
⊕
k≥0

F
(0,1)
k (D)T k ⊂ D[T ],

which is isomorphic to D(h) by the correspondence aβ(x)∂
βhk ↔ aβ(x)∂

βT k+|β|. Hence we

identify R(0,1)(D) with D(h). For a left D-module with a good (0,1)-filtration F
(0,1)
k (M),

its Rees module is defined by

R(0,1)(M) :=
⊕
k∈Z

F
(0,1)
k (M)T k,

which is a left D(h)-module of finite type with the action

a(x)∂βhk(fjT
j) = (a(x)∂βfj)T

j+k+|β| (a(x) ∈ C{x}, fj ∈ F
(0,1)
j (M)).

If φ : M → N is a (0,1)-filtered homomorphism, this naturally induces a graded homo-
morphism

φ(h) : R(0,1)(M) −→ R(0,1)(N),

which is thought of as the homogenization of φ with respect to both filtrations.

Lemma 3.1 Let f be a homogeneous element of a left graded D(h)-module M ′. Then
1⊗ f = 0 holds in D ⊗D(h) M ′ if and only if hνf = 0 for some ν ∈ N.

Proof: Assume 1⊗ f = 0. Then there exist a finite number of Qj ∈ D and homogeneous
Rj ∈ D(h) such that Rjf = 0 in M ′ and

∑
j QjRj = 1 in D as a right D(h)-module. The

latter relation reads
∑

j Qjρ(Rj) = 1. Homogenizing this relation, we get
∑

j h
νjQ

(h)
j Rj =

hν with some ν, νj ∈ N, which implies hνf =
∑

j h
νjQ

(h)
j Rjf = 0. Conversely, if hνf = 0,

we have 0 = 1⊗ hνf = ρ(hν)⊗ f = 1⊗ f . □

Definition 3.2 A left D(h)-module M ′ is called h-saturated if hf = 0 implies f = 0 for
any homogeneous element f of M ′.

It is easy to see that the Rees module of a (0,1)-filtered D-module M is h-saturated.
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Proposition 3.3 The functors ρ and R(0,1) give an equivalence between the category of
h-saturated graded D(h)-modules of finite type, and the category of D-modules with good
(0,1)-filtrations. Moreover these functors are exact, with exactness meaning filtered ex-
actness in the second category.

Proof: We omit the details of the proof which consists in proving that we have, in the
sense of natural transformations of functors, two natural isomorphisms:

Ψ : M ′ −→ R(0,1)(ρ(M
′)), Φ : D ⊗D(h) R(0,1)(M) −→M.

The verifications are straightforward.
The second point follows directly from this equivalence of categories and the fact that

a short exact sequence is filtered exact precisely if and only if its image by the functor
R(0,1) is exact. □

From the arguments above, we have

Theorem 3.4 Let M be a left D-module with a good (0,1)-filtration {Fk(M)}k∈Z. Then
there exists a (0,1)-filtered free resolution

· · · → L3
φ3−→ L2

φ2−→ L1
φ1−→ L0

φ0−→M → 0 (3.2)

with Li = Dri [ni] being the free module equipped with the (0,1)-filtration {F (0,1)
d [ni](Li)}d∈Z

with ni ∈ Zri such that

· · · → R(0,1)(L3)
φ
(h)
3−−→ R(0,1)(L2)

φ
(h)
2−−→ R(0,1)(L1)

φ
(h)
1−−→ R(0,1)(L0)

φ
(h)
0−−→ R(0,1)(M) → 0

is a minimal free resolution of R(0,1)(M). Moreover, such a free resolution as (3.2) is
unique up to (0,1)-filtered isomorphism. Note that R(0,1)(Li) is isomorphic to the graded
free module (D(h))ri [ni].

3.2 Correspondence between bifiltered D-modules and (u, v)-filtered
graded D(h)-modules

In order to define the bifiltration, we will assume here that (u, v) ̸= (0,1). A ((0,1), (u, v))-
bifiltration of a D-module M is a double sequence {Fd,k(M)}d,k∈Z of C{x}-submodules of
M such that

Fd,k(M) ⊂ Fd+1,k(M) ∩ Fd,k+1(M),
∪
d,k∈Z

Fd,k(M) =M,

(F
(0,1)
d′ (D) ∩ F (u,v)

k′ (D))Fd,k(M) ⊂ Fd+d′,k+k′(M) for any d, d′, k, k′ ∈ Z.

Definition 3.5 LetM be a left D-module. Then a bifiltration {Fd,k(M)} is called a good
((0,1), (u, v))-bifiltration if there exist f1, . . . , fl ∈M and ni,mi ∈ Z such that

Fd,k(M) = (F
(0,1)
d−n1

(D) ∩ F (u,v)
k−m1

(D))f1 + · · ·+ (F
(0,1)
d−nl

(D) ∩ F (u,v)
k−ml

(D))fl

holds for any d, k ∈ Z.
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Forgetting the (u, v)-filtration gives (functorially) a (0,1)-filtration on M , by setting

F
(0,1)
d (M) =

∪
k∈Z Fd,k(M), and this functor sends good bifiltered modules to good filtered

modules.
Now let M ′ be a h-saturated graded left D(h)-module with a good (u, v)-filtration

F
(u,v)
k (M ′). We can find f ′

j ∈M ′ homogeneous of degree nj, and integers mj so that

F
(u,v)
k (M ′) = F

(u,v)
k−m1

(D(h))f ′
1 + · · ·+ F

(u,v)
k−mr

(D(h))f ′
r

holds for any k ∈ Z. Then ρ(M ′) has a good bifiltration defined by

Fd,k(ρ(M
′)) := 1⊗ F

(u,v)
k (M ′

d) =
r∑
j=1

(
F

(0,1)
d−nj

(D) ∩ F (u,v)
k−mj

(D)
)
(1⊗ f ′

j).

We remark that this is not in general the intersection of the d-th term of the (0,1)-
filtration on ρ(M ′), which we denoted by 1⊗M ′

d, and the k-th term of the (u, v)-filtration

F
(u,v)
k (ρ(M ′)) := 1⊗ F

(u,v)
k (M ′) := {1⊗ f ∈ D ⊗D(h) M ′ | f ∈ F

(u,v)
k (M ′)}.

Conversely, if M is a left D-module with a good bifiltration {Fd,k(M)}, then its Rees
module R(0,1)(M) with respect to its (0,1)-filtration has a good (u, v)-filtration

F
(u,v)
k (R(0,1)(M)) :=

⊕
d∈Z

Fd,k(M)T d =
r∑
j=1

F
(u,v)
k−mj

(D(h))(fjT
nj),

where fj,mj, nj are as in Definition 3.5.

Proposition 3.6 The functors ρ and R(0,1) give an equivalence between the category of
h-saturated graded D(h)-modules with good (u, v)-filtrations and the category of D-modules
with good ((0,1), (u, v))-bifiltrations. Furthermore these functors are exact in the sense
of filtered and bifiltered categories respectively.

Proof: By the preceding discussion, we clearly obtain two functors between the categories
defined in this proposition, which coincide with the two functors previously considered in
Proposition 3.3 through the functors consisting in forgetting the (u, v)-filtrations. Since
the latter two functors give an equivalence, we have only to verify that the two mappings
Ψ,Φ in the proof of Proposition 3.3 leave the (u, v)-filtrations (resp. the bifiltrations)
unchanged, which is left to the reader.

Again the second point is simply a consequence of the equivalence of categories and
of the fact the image of a bifiltered exact sequence by the functor R(0,1) is precisely a
(u, v)-filtered and graded exact sequence. □

In conclusion we obtain

Theorem 3.7 LetM be a left D-module with a good ((0,1), (u, v))-bifiltration {Fd,k(M)}.
Then there exists a bifiltered free resolution

· · · → L3
φ3−→ L2

φ2−→ L1
φ1−→ L0

φ0−→M → 0 (3.3)
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with Li = Dri [ni][mi] being the free module equipped with the bifiltration {F (0,1)
k [ni](Li) ∩

F
(u,v)
k [mi](Li)} with ni,mi ∈ Zri such that

· · · → R(0,1)(L3)
φ
(h)
3−−→ R(0,1)(L2)

φ
(h)
2−−→ R(0,1)(L1)

φ
(h)
1−−→ R(0,1)(L0)

φ
(h)
0−−→ R(0,1)(M) → 0

is a minimal (u, v)-filtered free resolution of the (u, v)-filtered module R(0,1)(M). More-
over, such a free resolution as (3.3) is unique up to bifiltered isomorphism. Note that
R(0,1)(Li) is isomorphic to the (u, v)-filtered graded free module (D(h))ri [ni][mi].

4 Division theorem for submodules of (D(h))r

The aim of this section is to prove a division theorem (Theorem 4.1) for modules, which
is a generalization of the similar theorem for ideals proved in [ACG], and to deduce from
it the existence of a minimal filtered resolution of length ≤ 2n + 1 by a Schreyer type
argument exactly as in [OT1], or in [E] for the commutative case. Except for Lemma 4.2,
for which the choice of adapted linear forms is more complicated than in [ACG] in order
to be suitable for all the orderings <L used in the Schreyer’s type argument, the proof of
the division theorem follows the lines of the proof in [ACG] with suitable modifications
(see in particular Lemma 4.3); we shall sketch it only briefly.

4.1 Notations and statement of the division theorem

We fix a weight vector (u, v) ∈ Z2n, shift vectors m,n,p ∈ Zr with m = (m1, . . . ,mr)
etc., and shift exponents vi ∈ N2n. We take also a well ordering <1 on N2n which is
compatible with addition, and an ordering <2 on the indices {1, . . . , r}. Let L = L(u,v)

be the linear form L(α, β) = ⟨u, α⟩+ ⟨v, β⟩ on Q2n associated with (u, v).
We are going to define an ordering <L on the set N2n+1 × {1, . . . , r} for monomials

in (D(h))r, which is adapted to the fact that (D(h))r is considered as (u, v)-filtered and
graded with respective shift vectors m and n. The other shifts p,vi are present in order
to get a family of orderings which is stable in the Schreyer’s argument, as we shall see in
4.3.

We consider the mapping [L1, · · · , L5] : N2n+1×{1, . . . , r} → N×N×N×N2n×N, and
the product ordering (≺1, · · · ,≺5) = (<,<,<, (<1)

opp, <2) on the target (opp denotes the
opposite ordering), with the following list of Lp(α, β, k, i) :

[L1, · · · , L5] = [ |β|+ k + ni , L(α, β) +mi , |β|+ pi , (α, β) + vi , i ]

We define <L in a lexicographical fashion by

(α, β, k, i) <L (α′, β′, k′, j) if and only if there exists p with 1 ≤ p ≤ 5 such that

Lq(α, β, k, i) = Lq(α
′, β′, k′, j) for any q < p, and Lp(α, β, k, i) ≺p Lp(α

′, β′, k′, j).

For an operator P =
∑
aα,β,k,ix

α∂βhkei with e1, . . . , er being the canonical generators
of (D(h))r, its Newton diagram is defined by N (P ) := {(α, β, k, i) | aα,β,k,i ̸= 0}. We also
define
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• The leading exponent: lexp(P ) or lexp<L
(P ) := max <L

N (P ),

• The leading monomial: lm(P ) or lm<L
(P ) = xαξβhkei with (α, β, k, i) := lexp<L

(P ),
where ξ denotes the commutative variables corresponding to ∂,

• The leading term: lt(P ) or lt<L
(P ) := alexp(P )lm(P ); we often identify it with the

corresponding ‘monomial’ in gr(u,v)[m]((D(h))r).

There is an action N2n+1 × (N2n+1 × {1, . . . , r}) −→ N2n+1 × {1, . . . , r} defined by

(α′, β′, k′) + (α, β, k, i) = (α + α′, β + β′, k + k′, i)

such that for nonzero Q ∈ D(h) and P ∈ (D(h))r we have lexp<L
(QP ) = lexp<L

(Q) +
lexp<L

(P ), where lexp<L
(Q) is given by the case r = 1 without shifts of the ordering <L.

We consider l elements P (1), . . . , P (l) of (D(h))r[n] homogeneous of respective degrees
d1,. . . ,dl. Let their leading exponents be

lexp<L
(P (j)) = (αj, βj, kj, ij) ∈ N2n × N× {1, . . . , r}.

We define a partition of N2n × N× {1, . . . , r} by

∆1 := lexp<L
(P (1)) + N2n × N,

∆i :=
(
lexp<L

(P (i)) + N2n × N
)
\
i−1∪
j=1

∆j (i = 2, . . . , l),

∆ := N2n × N× {1, . . . , r} \
l∪

j=1

∆j.

The following division theorem is a generalization to modules of the division theorem
proved for left ideals of D(h) in [ACG] :

Theorem 4.1 (Division theorem) For any P ∈ (D(h))r, there exist Q1, . . . , Ql ∈ D(h)

and R ∈ (D(h))r such that

(1) P =
∑l

i=1QiP
(i) +R,

(2) If Qi ̸= 0, then N (Qi) + lexp<L
(P (i)) ⊂ ∆i for all i,

(3) If R ̸= 0, then N (R) ⊂ ∆.

4.2 Proof of the division theorem

Since the result depends only on the leading exponents lexp<L
(P (i)), not on the ordering

<L itself, we may assume in view of the following lemma that ui < 0, ui + vi > 0
(i = 1, . . . , n), and σ(u,v)[m](P (j)) = lt<L

(P (j)) (j = 1, . . . , l).

Lemma 4.2 Let P (1), . . . , P (l) be l elements of (D(h))r and let an ordering <L be as in
4.1. Then there is a linear form L′ = L(u′,v′) with u

′
i < 0 and u′i+v

′
i > 0, and a shift vector

m′ such that the ordering <L′ associated with the shifts n,m′,p,vi satisfies the following
two conditions:
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(1) Each P (j) has the same leading term for <L and <L′ : lt<L
(P (j)) = lt<L′ (P

(j)).

(2) The principal L′-symbols of P (j) are monomials: σ(u′,v′)[m′](P (j)) = lt<L′ (P
(j)).

Proof: It is enough to work with only one operator P = P (1), and to make l successive
slight changes of the linear form L. There is a finite minimal set of exponents Aν =
(αν , βν , kν , iν) ∈ N (P ) such that

N (P ) ⊂
µ∪
ν=1

(Aν + Nn × (−Nn)× (−N)).

Then for any ordering <L′ , the leading exponent lexp<L′ (P ) is one of the Aν among those
with maximal degree |βν | + kν + niν . In particular, we have lexp<L

(P ) = Aν0 with some
ν0 and

Aν <L Aν0 for any ν ̸= ν0.

For the sake of simplicity of the notation, we put Aν0 = (α, β, k, i).
By [B], there exists a linear form Λ on Q2n with positive coefficients which order all

the distinct exponents (αν , βν) + viν in the same way as <1, so that

Λ(α, β) + Λ(vi) < Λ(αν , βν) + Λ(viν ) if (α, β) + vi <1 (αν , βν) + viν .

Let σ be the permutation of {1, . . . , r} such that i <2 j if and only if σ(i) < σ(j). Consider
the linear form L′(α, β) = ⟨u, α⟩+ ⟨v+ ϵ1, β⟩ − ϵ2Λ(α, β). Then we can verify easily that
L′ satisfies the conclusion of the lemma for any ϵ > 0 small enough if we take the shift

m′ := m+ ϵp− ϵ2(Λ(v1), . . . ,Λ(vr)) + ϵ3(σ(1), . . . , σ(r)).

instead of m. □
Let xαjξβjhkjeij be the monomial lt<L

(P (j)) and δj := ord(u,v)[m](P (j)) = L(αj, βj)+

mij . We consider the subspace Ed ⊂ (D(h))r[n] of homogeneous vectors P = (P1, . . . , Pr)
of degree d. If P =

∑
pα,β,k,ix

α∂βhkei is such a vector, we define for any real number
s > 0 its pseudo-norm by

|P |s :=
∑
α,β,k,i

|pα,β,k,i|s−L(α,β)−mi .

We obtain in this way a family of Banach spaces Ed,s ⊂ Ed defined by

Ed,s := {P ∈ Ed : |P |s < +∞}

such that s ≤ s′ ⇒ Ed,s′ ⊂ Ed,s. Furthermore, we have Ed =
∪
s>0Ed,s. Indeed, because

of the condition ui < 0, the pseudo-norm is finite for given P and s small enough.
The following lemma, which is a partial step in a homogeneous division process, is a

direct adaptation of Lemma 10 of [ACG]:

Lemma 4.3 Let P̂ be an L-homogeneous element of Ed with ord(u,v)[m](P̂ ) = δ. Then,

there exist Q̂j ∈ D(h) (j = 1, . . . , l) and R̂, Ŝ ∈ (D(h))r with deg(Qj) = d−dj, deg[n](R̂) =
deg[n](Ŝ) = d which satisfy P̂ =

∑l
j=1 Q̂jP

(j) + R̂ + Ŝ and the following conditions:
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(1) Q̂j is (u, v)-homogeneous with ord(u,v)(Q̂j) = δ − δj.

(2) R̂ is F (u,v)[m]-homogeneous with ord(u,v)[m](R̂) = δ.

(3) ord(u,v)[m](Ŝ) ≤ δ − 1/h for some fixed integer h > 0 such that L(Z2n) ⊂ 1
h
Z.

(4) N (Q̂j) + lexp<L
(P (j)) ⊂ ∆j and N (R̂) ⊂ ∆.

Moreover, there exist K > 0 and s0 > 0, depending only on P (1), . . . , P (l) and d, so that
we have |Q̂j|s ≤ sδj |P̂ |s, |R̂|s ≤ |P̂ |s, |Ŝ|s ≤ Ks1/h|P̂ |s for all 0 < s ≤ s0.

Let Ed,s,δ (resp. Ed,s,≤δ) be the subspace of Ed,s consisting of F (u,v)[m]-homogeneous
elements of order δ (resp. elements of order ≤ δ). Then Lemma 4.3 gives us continuous
linear mappings

qj,δ : Ed,s,δ → E1
d,s,δ−δj , rδ : Ed,s,δ → Ed,s,δ, vδ : Ed,s,δ → Ed,s,≤δ−1/h

defined by
qj,δ(P̂ ) = Q̂(j), rδ(P̂ ) = R̂, vδ(P̂ ) = Ŝ,

where E1
d,s,δ denotes the scalar version (with no shift) of Ed,s,δ. By using these mappings,

the final step of the proof is again almost the same as in [ACG].

4.3 Filtered free resolutions by Schreyer’s method

Let N be a (u, v)-filtered graded submodule of (D(h))r[n][m], and let L = L(u,v).

Definition 4.4 A set G = {P (1), . . . , P (r1)} of homogeneous elements of N \{0} is called
a Gröbner basis or a standard basis of N with respect to the ordering <L if it generates
N and satisfies

lexp<L
(N) := {lexp<L

(P ) | P ∈ N \ {0}} =

r1∪
i=1

(lexp<L
(P (i)) + N2n+1).

We recall in Proposition 4.5 below a well-known criterion for a subset G of N to be a
Gröbner basis. First put lexp<L

(P (i)) = (αi, βi, ki, li) and

Λ := {(i, j) | 1 ≤ i < j ≤ r1 and li = lj}.

Consider the S-vectors Sj,iP
(i)−Si,jP (j) of (D(h))r defined for (i, j) ∈ Λ such that Sj,i and

Si,j are monomial operators that are minimal in the product partial ordering on N2n+1

satisfying

lexp<L
(Sj,iP

(i) − Si,jP
(j)) <L lexp<L

(Sj,iP
(i)) = lexp(Si,jP

(j)).

Applying Theorem 4.1 to the S-vectors, we get

Sj,iP
(i) − Si,jP

(j) =

r1∑
k=1

Ui,j,kP
(k) +R(i, j)

with Ui,j,k ∈ D(h) and the remainder R(i, j) ∈ (D(h))r.
By exactly the same argument as the proof of Proposition 16 of [ACG], we get
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Proposition 4.5 The following two conditions are equivalent:

(1) G is a Gröbner basis of N := D(h)P (1) + · · ·+D(h)P (r1).

(2) For any (i, j) ∈ Λ, the remainder R(i, j) = 0.

In the Schreyer method the ordering <′
L on N2n+1×{1, . . . , r1} adapted to the module

of relations among P (1), . . . , P (r1) is defined as follows:

(α, β, k, i) <′
L (α′, β′, k′, i′) if and only if

(α, β, k) + lexp<L
(P (i)) <L (α′, β′, k′) + lexp<L

(P (i′))
or
(α, β, k) + lexp<L

(P (i)) = (α′, β′, k′) + lexp<L
(P (i′)) and i′ < i.

This ordering is of the same type as the one described in 4.1 with the same L, and shifts
n′,m′,p′ ∈ Zr1 and v′

i ∈ N2n (i = 1, . . . , r1) for <
′
L being given by

n′
i := |βi|+ ki + nli , m′

i := L(αi, βi) +mli , p′i := |βi|+ pli , v′
i := (αi, βi) + vli .

Then we obtain the following theorem exactly in the same way as Theorem 9.10 of [OT1]
by applying Theorem 4.1 to (D(h))r1 and <′

L.

Theorem 4.6 Suppose that {P (1), . . . , P (r1)} is a Gröbner basis of N with respect to <L.
Let us define elements of (D(h))r1 by

Vi,j := (0, . . . , Sj,i, . . . ,−Si,j, . . . , 0)− (Ui,j,1, . . . , Ui,j,r1).

Then {Vi,j | (i, j) ∈ Λ} is a Gröbner basis of the module of relations

Syz(P (1), . . . , P (r1)) :=
{
(V1, . . . , Vr1) |

r1∑
i=1

VjP
(j) = 0

}
with respect to the ordering <′

L.

Using this process repeatedly, we can construct a (u, v)-filtered graded free resolution

· · · ψ3−→ (D(h))r2
ψ2−→ (D(h))r1

ψ1−→ (D(h))r0
ψ0−→ (D(h))r0/N → 0.

Finally, by ordering the elements of the Gröbner basis at each step appropriately, we
can arrange for the leading exponents of the rows of ψi+1 to depend only on 2n + 1 − i
variables among (x1, . . . , xn, ξ1, . . . , ξn, h) for each i ≤ 2n+1. (See Corollary 15.11 of [E].)
Since the leading exponents of the rows of ψ2n+2 are of the type (0, . . . , 0; i), the division
theorem implies that Cokerψ2n+2 is filtered free. Thus we obtain

Theorem 4.7 Any graded D(h)-module M with a good (u, v)-filtration admits a filtered
free resolution of length ≤ 2n + 1, which can be obtained by Schreyer’s process described
above.
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4.4 Step by step minimalization

Let us consider a (u, v)-filtered graded free resolution

· · · ψ3−→ (D(h))r2
ψ2−→ (D(h))r1

ψ1−→ (D(h))r0
ψ0−→ (D(h))r0/N → 0,

which is not necessarily minimal. We denote by Ai = (Pk,l) the ri × ri−1 matrix defining
ψi as the right multiplication by Ai for i ≥ 1.

Denote by ni = (ni,1, . . . , ni,ri) and mi = (mi,1, . . . ,mi,ri) the shifts which are involved
in the above resolution in order for ψi to be homogeneous and (u, v)-filtered. Then we
have

deg(Pk,l) = ni,k − ni−1,l, ord(u,v)(Pk,l) ≤ mi,k −mi−1,l.

The above resolution may, or may not, be the one obtained by Schreyer’s method. In
any case, we want to show how to obtain from it a minimal resolution in a constructive
way. Assume that the given resolution is not minimal. This implies that the symbol
σ
(u,v)
mi,k−mi−1,l

(Pk,l) of some element of Ai is not in gr(u,v)(I(h)). This symbol is bihomoge-
neous of bidegree (0, 0), which implies that ni,k = ni−1,l, mi,k = mi−1,l, and that it is
an invertible power series involving only the variables xp of weight up = 0. Since Pk,l is
homogeneous, it is also a power series, which is necessarily invertible.

We may assume without loss of generality that k = l = 1, and we denote by
ei,1, · · · , ei,ri the canonical generators of (D(h))ri . Then we have a commutative diagram
of (u, v)-filtered graded modules

· · · ψi+2−−→(D(h))ri+1
ψi+1−−−→ (D(h))ri

ψi−−−→ (D(h))ri−1
ψi−1−−−→ (D(h))ri−2

ψi−2−−→ · · ·∥∥∥ pi

y pi−1

y ∥∥∥
· · · ψi+2−−→(D(h))ri+1

ψ′
i+1−−−→ (D(h))ri−1 ψ′

i−−−→ (D(h))ri−1−1
ψ′
i−1−−−→ (D(h))ri−2

ψi−2−−→ · · ·

(4.1)

In this diagram, the shifts for (D(h))rj−1 are (nj,2, . . . , nj,rj) and (mj,2, . . . ,mj,rj) for j =
i, i − 1, the homomorphism pi is the projection onto the last ri − 1 factors, and pi−1 is
given by the composite

(D(h))ri−1 −→ (D(h))ri−1

D(h) · ψi(ei,1)
=

(D(h))ri−1

D(h) · (P1,1, . . . , P1,ri−1
)
≃ (D(h))ri−1−1

of the canonical projection and the filtered isomorphism which associates (Q2, . . . , Qri−1
) ∈

(D(h))ri−1−1 with the residue class of (0, Q2, . . . , Qri−1
) in (D(h))ri−1/D(h) · ψi(ei,1).

Since all the vertical arrows of (4.1) are filtered surjective, we can regard them as a
morphism between the two horizontal complexes in (4.1), the kernel of which is isomorphic,
as a (u, v)-filtered and graded complex, to the acyclic one

· · · −→ 0 −→ D(h)ei,1 −→ D(h)ψi(ei,1) −→ 0 −→ · · · .

Therefore this morphism is a (u, v)-filtered quasi-isomorphism and the lower horizontal
complex of (4.1) is again a (u, v)-filtered free graded resolution of the module M =
(D(h))r0/N . The matrices A′

i+1, A
′
i, A

′
i−1 representing the homomorphisms ψ′

i+1,ψ
′
i, ψ

′
i−1

respectively are then given as follows:
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• A′
i+1 is obtained from Ai+1 by removing its first column.

• A′
i−1 is obtained from Ai−1 by removing its first row, or is the appropriate quotient

if i− 1 = 0.

• A′
i is slightly more complicated: it is an (ri−1)×(ri−1−1) matrix whose (j−1, k−1)-

component is P ′
j,k = Pj,k − Pj,1P1,1

−1P1,k.

Repeating this process a finite number of times, we get a desired minimal resolution.
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