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Abstract

Let k be a field of characteristic 0. For a polynomial mapping f = (f1, . . . , fp) of kn to kp,
the local Bernstein-Sato ideal of f at a point a ∈ kn is defined as an ideal of the ring of
polynomials in s = (s1, . . . , sp). We propose an algorithm for computing local Bernstein-Sato
ideals combining Gröbner bases in rings of differential operators and primary decomposition
in a polynomial ring. It also enables us to compute a constructible stratification of kn such
that the local Bernstein-Sato ideal is constant along each stratum. We also present examples,
some of which have non-principal Bernstein-Sato ideals, computed with our algorithm by using
a computer algebra system Risa/Asir.
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Introduction

Let n be a positive integer, k a field of characteristic zero, and a = (a1, . . . , an) a
fixed point in kn. Let x = (x1, . . . , xn) be a set of indeterminates. In this introduction,
A shall be one of the following rings: the polynomial ring k[x]; the localization k[x]a of
k[x] at a; the formal power series ring Ôkn,a = k[[x− a]] = k[[x1 − a1, . . . , xn− an]]; and
when k = C, the ring OCn,a of germs of complex analytic functions at a. Denote by ∂xi
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the partial differential operator ∂
∂xi

and by DA = A⟨∂x1 , . . . , ∂xn⟩ the ring of differential
operators with coefficients in A.

Let p ≥ 1 be an integer and let us consider f = (f1, . . . , fp) ∈ Ap. Denote by F the
product f1 · · · fp and let us introduce a set of indeterminates s = (s1, . . . , sp) and the
A[1/F, s]-free module

LA = A[1/F, s] · fs

with fs = fs11 · · · fspp . The set LA is naturally endowed with a DA[s]-module structure.
Indeed, given g ∈ A[1/F, s], we have

∂xi
· gfs =

( ∂g
∂xi

+ g

p∑
j=1

sj
∂fj
∂xi

f−1
j

)
fs.

The module LA is an interesting and important object not only in D-module theory
but also in, e.g., algebraic geometry, the theory of prehomogeneous vector spaces, and the
theory of hypergeometric functions in several variables. For example, Oaku and Takayama
(1999) proposed an algorithm for computing the twisted de Rham cohomology groups of
the complement of the affine hypersurface F = 0 in Cn by using the D-module structure
of LA.

The Bernstein-Sato ideal of f (with respect to A) is defined to be the ideal

BA(f) = {b(s) ∈ k[s] | b(s)fs ∈ DA[s] · Ffs}

of k[s] and plays an essential role in studying the D-module structure of LA. If p = 1, the
monic generator of BA(f) is called the Bernstein-Sato polynomial of f (with respect to
A) (see (Bernstein, 1972)). When f ∈ k[x]p, Bk[x](f) is called the global Bernstein-Sato
ideal and Bk[x]a(f) is called the local Bernstein-Sato ideal at a ∈ kn. It is easy to see
that Bk[x]a(f) is equal to BÔkn,a

(f) and that BC[x]a(f) is equal to BOCn,a
(f) if f ∈ C[x]p.

When f ∈ OCn,a, BOCn,a
(f) is called the analytic Bernstein-Sato ideal of f , and it is equal

to BÔCn,a
(f). Finally, when f ∈ Ôkn,a, we call BÔkn,a

(f) the formal Bernstein-Sato ideal

of f (at a).
It was proved by Sabbah (1987) that analytic Bernstein-Sato ideals are not zero. See

also (Bahloul, 2005a) for a constructive proof. Theoretical studies of Bernstein-Sato ideals
can also be found in, e.g., (Maynadier, 1997), (Briançon and Maynadier, 1999), (Briançon
and Maisonobe, 2002), (Bahloul, 2005b).

For a polynomial mapping, a general algorithm for the global Bernstein-Sato ideal
was first proposed by Oaku and Takayama (1999); its modifications have been given by
Bahloul (2001), Briançon and Maisonobe (2002), Levandovskyy and Morales (2008). On
the other hand, for p = 1, Oaku (1997a) gave an algorithm for the local Bernstein-Sato
polynomial at a given point (see also the recent work by Nakayama (2009)).

The first goal of the present paper is to present an algorithm for computing Bk[x]a(f)
for a given f ∈ k[x]p with p ≥ 1 and a ∈ kn. For this purpose, we combine the algorithm
of Oaku and Takayama (1999) for the global Bernstein-Sato ideal, which is based on
Gröbner base computations in rings of differential operators, with primary decomposition
in a polynomial ring, in the same way as was proposed by Oaku (1997b) in the case p = 1.
This algorithm also provides us with a constructible stratification of kn such that for a
running over a given stratum the local Bernstein-Sato ideal at a is constant. The existence
of such a stratification was proved theoretically by Briançon and Maisonobe (2002).
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We have implemented our algorithm in a computer algebra system Risa/Asir (Noro el

al.). Experimentation suggests that, at least in ‘simple’ cases, global and local Bernstein-

Sato ideals are mostly principal, i.e., generated by a single element. In fact, Maynadier

(1997) proved that the local Bernstein-Sato ideal is principal if n = p = 2 and f = (f1, f2)

defines a quasi-homogeneous complete intersection with an isolated singularity. On the

other hand, Briançon and Maynadier (1999) showed that the local Bernstein-Sato ideal

of f = (z, x4 + y4 + 2zx2y2) in three variables (x, y, z) at the origin is not principal

without giving its explicit generators. We can compute the two generators of it using our

algorithm (see Example 3). Rather surprisingly, the global Bernstein-Sato ideal of the

same f is principal. This exemplifies the importance of computing the local Bernstein-

Sato ideal. We also present some variants of this example.

In Section 1, we describe fundamental properties and the algorithm. For the sake of

clarity, all the proofs are postponed to Section 2. In Section 3, we give some examples

computed with our algorithm (over the rationals) together with a validity proof of the

results over the complex numbers. Finally in Section 4, we give some remarks on our

implementation in Risa/Asir.

1. An algorithm for local Bernstein-Sato ideals

Let us fix a polynomial mapping f = (f1, . . . , fp) ∈ k[x]p. We are interested in

Bk[x]a(f). As we recalled, the formal, analytic (if k = C), and local Bernstein-Sato ideals

of f at a are the same. So we shall use the notation Bloc,a(f) = Bk[x]a(f), which shall be

contrasted with the global Bernstein-Sato ideal Bglob(f) = Bk[x](f).

Moreover, we shall use the notations D = k[x]⟨∂x⟩, Da = k[x]a⟨∂x⟩, D̂a = Ôkn,a⟨∂x⟩,
and when k = C, Da = OCn,a⟨∂x⟩.

Following Malgrange (1974), let us introduce new variables t = (t1, . . . , tp) together

with the associated partial derivation operators ∂t = (∂t1 , . . . , ∂tp) and consider the ring

D̂a⟨t, ∂t⟩ = D̂a⊗kk[t]⟨∂t⟩. We also consider subringsD⟨t, ∂t⟩,Da⟨t, ∂t⟩ and (when k = C)
Da⟨t, ∂t⟩.

The free module LÔkn,a
= Ôkn,a[1/F, s]f

s has a D̂a⟨t, ∂t⟩-module structure defined

by

tj · g(s)fs = g(s1, . . . , sj + 1, . . . , sp)fjf
s,

∂tj · g(s)fs = −sjg(s1, . . . , sj − 1, . . . , sp)f
−1
j fs

for g(s) ∈ Ôkn,a[1/F, s]. It follows that −∂tj tj acts on LÔkn,a
as sj . Thus we shall identify

sj with −∂tj tj and the rings D[s], Da[s], Da[s] and D̂a[s] shall be regarded as subrings

of D̂a⟨t, ∂t⟩.
Let us consider the following p+ n elements of D⟨t, ∂t⟩:

tj − fj (j = 1, . . . , p), ∂xi
+

p∑
j=1

∂fj
∂xi

∂tj (i = 1, . . . , n). (1)

One can easily check that these elements annihilate fs. In fact we have
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Lemma 1. The annihilating ideals 1 annD̂a⟨t,∂t⟩(f
s) = {P ∈ D̂a⟨t, ∂t⟩ | Pfs = 0},

annDa⟨t,∂t⟩(f
s), annDa⟨t,∂t⟩(f

s), annD⟨t,∂t⟩(f
s) are all generated by the elements in (1).

Now we introduce the following ideals:
• I = annD⟨t,∂t⟩f

s, J = annDa⟨t,∂t⟩f
s.

• I1 = annD[s]f
s = I ∩D[s] ⊂ D[s], J1 = annDa[s]f

s = J ∩Da[s] ⊂ Da[s].
• I2 = (I1 +D[s] · F ) ∩ k[x, s] ⊂ k[x1, . . . , xn, s1, . . . , sp],
J2 = (J1 +Da[s] · F ) ∩ k[x]a[s] ⊂ k[x1, . . . , xn]a[s1, . . . , sp].

• I3 = I2 ∩ k[s] ⊂ k[s1, . . . , sp], J3 = J2 ∩ k[s] ⊂ k[s1, . . . , sp].

Proposition 2. I3 = Bglob(f) and J3 = Bloc,a(f).

In both global and local cases, we start with the ‘same’ ideals I and J in the sense
that they admit a common set of generators. Then we construct in parallel the ideals Ik
and Jk with k = 1, 2, 3 to get the global Bernstein-Sato ideal I3 = Bglob(f) and the local
Bernstein-Sato ideal J3 = Bloc,a(f) respectively. It is natural to ask whether Ik and Jk
are the same (in the above sense). Here is the beginning of the answer.

Proposition 3. J1 = Da[s] · I1 and J2 = k[x]a[s] · I2.

This proposition implies that the global and the local constructions coincide up to
I2 and J2. The passage from I2 to I3 consists in the usual elimination of x variables.
However, the passage from J2 to J3 is different:

Proposition 4. Let Υ be an ideal in k[x, s] and a be a point of kn. Let Υ = Υ1∩· · ·∩Υr
be a primary decomposition of Υ. Set

σa = {i ∈ {1, . . . , r} | a ∈ V (Υi ∩ k[x])},

where V (·) stands for ‘the zero set of ’. Then we have

(k[x]a[s] ·Υ) ∩ k[s] = (
∩
i∈σa

Υi) ∩ k[s]

with the equality
∩
i∈σa

Υi = k[x, s] if σa = ∅.

So far, a was a fixed point in kn. Now we are concerned with the behaviour of Bloc,a(f)
when a runs over kn. Let us apply Proposition 4 to a primary decomposition Υ1∩· · ·∩Υr
of I2 to obtain the following:

Corollary 5. For each subset σ ⊂ {1, . . . , r}, set
• Wσ = kn \ (

∪r
i=1 V (Υi ∩ k[x])) if σ = ∅,

• Wσ =
∩r
i=1 V (Υi ∩ k[x]) if σ = {1, . . . , r},

• Wσ = (
∩
i∈σ V (Υi ∩ k[x])) \ (

∪
i/∈σ V (Υi ∩ k[x])) otherwise.

Then
∪
σWσ is a constructible stratification of kn such that the map kn ∋ a 7→ Bloc,a(f)

is constant on each Wσ.

Summed up, our algorithm is described as follows:

Algorithm 1.

1 In a non commutative ring, ideal shall always mean left ideal.
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Input f = (f1, . . . , fp) ∈ k[x]p and a ∈ kn.
Step 1 Compute the annihilator I1 = annD[s]f

s as follows:

(i) Introducing indeterminates u = (u1, . . . , up) and v = (v1, . . . , vp), let Ĩ be the left
ideal of D⟨t, ∂t⟩[u, v] generated by

tj − ujfj , 1− ujvj (j = 1, . . . , p), ∂xi
+

p∑
j=1

uj
∂fj
∂xi

∂tj ( i = 1, . . . , n).

(ii) Let G̃ be a Gröbner base of Ĩ with respect to a term order for eliminating u and
v.

(iii) Set G := G̃ ∩D⟨t, ∂t⟩.
(iv) Let P be an element of G. Then there exist Q(s) ∈ D[s] and ν1, . . . , νp ∈ Z such

that
S1,ν1 · · ·Sp,νpP = Q(−∂t1t1, . . . ,−∂tptp),

where Sj,ν = ∂νtj if ν ≥ 0 and Sj,ν = t−νj otherwise. We denote this Q(s) by
ψ(P )(s).

(v) Let I1 be the ideal of D[s] generated by {ψ(P )(s) | P ∈ G}.
Step 2 Compute I2 := (I1 + D[s] · F ) ∩ k[x, s] with F := f1 · · · fp through a Gröbner
base with respect to a term order for eliminating ∂x1

, . . . , ∂xn
.

Step 3 Compute the local Bernstein-Sato ideal at a ∈ kn as follows:
(i) Compute a primary decomposition I2 = Υ1 ∩ · · · ∩Υr in k[x, s].
(ii) Set σa := {i ∈ {1, . . . , r} |, a ∈ V (Υi ∩ k[x])}.
(iii) If σa = ∅ then set Bloc,a(f) := k[s]. Otherwise set Bloc,a(f) :=

∩
i∈σa

(
Υi ∩ k[s]

)
.

This ideal intersection can be computed by Gröbner bases in k[x, s].
Output The local Bernstein-Sato ideal Bloc,a(f) of f at a. Step 3 also yields a stratifi-

cation of kn as is described in Corollary 5.

Note that Step 1 of this algorithm was given by Oaku and Takayama (1999); one can
also use an alternative method introduced by Briançon and Maisonobe (2002). See also
Ucha and Castro (2004), Gago-Vargas et al. (2005), Levandovskyy and Morales (2008).
Steps 2 and 3 were introduced by (Oaku, 1997b, pp. 71–74) in the case p = 1.

As another consequence of our algorithm, we recover the following well-known fact:

Corollary 6. Assume that k is algebraically closed. Then

Bglob(f) =
∩
a∈kn

Bloc,a(f).

Remark. With a slight generalisation of the construction and similar proofs one can ob-
tain the following result when k is not supposed to be algebraically closed (see (Briançon
and Maisonobe, 2002, Proposition 1.4)):

Bglob(f) =
∩

m∈SpecMax(k[x])

Bloc,m(f),

where SpecMax(k[x]) is the set of the maximal ideals of k[x], and Bloc,m(f) is the set of
b(s) ∈ k[s] such that c(x)b(s)fs ∈ D[s]Ffs with some c(x) ∈ k[x]∖m.

The first statement in Proposition 3 says that the annihilators of fs in D[s] and in
Da[s] have a common set of generators. Similarly
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Proposition 7. For f ∈ k[x]p and a ∈ kn, annD̂a[s]
(fs) equals D̂a[s] · annD[s](f

s). If

f ∈ C[x]p and a ∈ Cn, then annDa[s](f
s) equals Da[s] · annD[s](f

s).

Corollary 8. If f ∈ k[x]p and a ∈ kn, then Bk[x]a(f) coincides with Bk[[x−a]](f). If
f ∈ C[x]p and a ∈ Cn, then BC[x]a(f) coincides with BOa

(f).

For this corollary, see also Proposition 1.7 in (Briançon and Maisonobe, 2002).

2. Proofs

All the proofs, except for Corollaries 5 and 6, concern a fixed point a. So we shall
assume a = 0 in the sequel.

Proof of Lemma 1. Let us give the proof for annD̂0⟨t,∂t⟩(f
s). The other cases are

similar. Recall that annD̂0⟨t,∂t⟩(f
s) is the left ideal {P ∈ D̂0⟨t, ∂t⟩ | P · fs = 0}. Let P

be in this ideal. Modulo the elements in (1), we may assume that P ∈ k[[x]][∂t]. Let us
write P =

∑
ν cν∂

ν
t with ν ∈ Np and ∂νt =

∏p
j=1 ∂

νj
tj and cν ∈ k[[x]]. Then

0 = Pfs =
∑
ν

(−1)|ν|cν

p∏
j=1

(sj · · · (sj − νj + 1)f
−νj
j )fs.

This equality takes place in the free module k[[x]][1/F, s] · fs. Thus all the terms in the
sum are zero, which implies that all the cν are zero. This completes the proof.

Proof of Proposition 2. Let us prove the second equality since the proof is the same
for the first one. Let b(s) be in k[s]. If b(s) ∈ Bloc,0(f) then b(s)fs = P · Ffs for some
P ∈ D0[s]. Thus b(s) − PF annihilates fs, i.e. b(s) ∈ (D0[s]F + J1) ∩ k[s] = J3. The
converse implication can be proved in the same way.

Proof of Proposition 3. We have I ⊂ J so I1 ⊂ J1 and then D0[s]I1 ⊂ J1. Let
us show the converse inclusion. Take P in J1 = (D0⟨t, ∂t⟩ · I) ∩D0[s]. Writing P as an
element in D0⟨t, ∂t⟩I and as an element of D0[s] we may clear the denominators and
obtain the existence of c(x) ∈ k[x] with c(0) ̸= 0 such that c(x)P ∈ I ∩D[s]. Thus P is
in D0[s](I ∩ D[s]) = D0[s]I1. This ends the proof for the first equality. For the second
one the arguments are exactly the same.

Proposition 4 is an obvious consequence of the following lemma:

Lemma 9.
(i) If Υ ⊂ k[x, s] is an ideal with 0 /∈ V (Υ ∩ k[x]) then

(k[x]0[s] ·Υ) ∩ k[s] = k[s].
(ii) If Υ ⊂ k[x, s] is a primary ideal with 0 ∈ V (Υ ∩ k[x]) then

(k[x]0[s] ·Υ) ∩ k[s] = Υ ∩ k[s].
(iii) Given ideals Υ1, . . . ,Υr in k[x, s], we have:

k[x]0[s] · (
∩r
i=1 Υi) =

∩r
i=1(k[x]0[s] ·Υi).

Proof. (i) If 0 /∈ V (Υ∩k[x]), there exists g ∈ Υ∩k[x] such that g(0) ̸= 0, which implies
1 = g−1g ∈ k[x]0[s] ·Υ.

(ii) Let f ∈ (k[x]0[s] · Υ) ∩ k[s]. Then there exists c ∈ k[x] with c(0) ̸= 0 such that
cf ∈ Υ. Assume, by contradiction, that f /∈ Υ. Then since Υ is primary, cl ∈ Υ for some
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l ∈ N. This implies c(0) = 0, which is a contradiction. Thus f ∈ Υ ∩ k[s]. This proves
the left-right inclusion. The reverse one is trivial.

(iii) Since the left-right inclusion is trivial, let us prove the other one. Let f be in∩r
i=1(k[x]0[s] ·Υi). Then for each i, cif ∈ Υi for some ci ∈ k[x] satisfying ci(0) ̸= 0. As

a consequence, (
∏r

1 ci)f ∈
∩r

1 Υi and then f ∈ k[x]0[s] · (
∩r
i=1 Υi). 2

Now, let us work with arbitrary points a ∈ kn and prove the two corollaries.
Proof of Corollary 5. First, it is clear that each Wσ is locally closed (or empty).

Moreover, it is clear that any a ∈ kn belongs to some Wσ (indeed, a ∈ Wσa
with the

notations of Proposition 4 and Corollary 5). Thus we have a constructible stratification
of kn. The constancy of the map (a 7→ Bloc,a(f)) on each Wσ follows from the obvious
observation that if a and a′ are two points in a Wσ then σa = σa′ , which implies, in view
of the whole algorithm and in particular Proposition 4, that Bloc,a(f) = Bloc,a′(f).

Proof of Corollary 6. First, it is obvious from the definitions that Bglob(f) is included
in any Bloc,a(f). So we have the inclusion Bglob(f) ⊂

∩
a Bloc,a(f). Let us prove the

converse one. We follow the notations in Proposision 4 and Corollary 5. Let us fix i ∈
{1, . . . , r}. Notice that since Υi ⊂ k[x, s] is primary, Υi ∩k[x] is also primary in k[x] and
so V (Υi ∩ k[x]) is irreducible. Set

τi = {k ∈ {1, . . . , r} | V (Υi ∩ k[x]) ⊂ V (Υk ∩ k[x])}.

Assume, by contradiction, that Wτi = ∅. Then V (Υi ∩ k[x]) ⊂
∪
k/∈τi V (Υk ∩ k[x])

and by irreducibility of V (Υi ∩ k[x]) it would be contained in V (Υk ∩ k[x]) for some
k /∈ τi, which is impossible. So let ai ∈ Wτi . Then we have Bloc,ai(f) ⊂ Υi ∩ k[s]. As a
consequence, we get∩

a∈kn

Bloc,a(f) ⊂
∩

i=1,...,r

Bloc,ai(f) ⊂
∩

i=1,...,r

(Υi ∩ k[s]) = I2 ∩ k[s] = Bglob(f).

Proof of Proposition 7. We assume again that a = 0. We shall prove only the first
statement. The arguments are the same for the second statement. First we have a natural
isomorphism

k[[x]]⊗k[x] D[s]fs ≃ D̂0[s]⊗D[s] D[s]fs. (2)

This gives a natural left D̂0[s]-module structure on the tensor product of the left-hand
side.

Now let us start with the following exact sequence of D[s]-modules:

0 → I1 → D[s] → D[s]fs → 0.

By the flatness of D̂0[s] over D[s], we get an exact sequence of D̂0[s]-modules:

0 → D̂0[s]I1 → D̂0[s] → D̂0[s]⊗D[s]fs → 0.

Thanks to the isomorphism (2), it remains to prove that k[[x]]⊗k[x] D[s]fs is naturally

isomorphic to D̂0[s]f
s. We have an injective D[s]-morphism:

0 → D[s]fs → k[x][1/F, s]fs.

Flatness of k[[x]] over k[x] implies the exactness of

0 → k[[x]]⊗k[x] D[s]fs
φ→ k[[x]]⊗k[x] k[x][1/F, s]f

s.
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On the other hand, there is a natural homomorphism

k[[x]]⊗k[x] k[x][1/F, s]f
s ψ→ k[[x]][1/F, s]fs.

An arbitrary element of k[[x]] ⊗k[x] k[x][1/F, s]f
s is written in the form

∑
µ ĉµ(x) ⊗

sµF−mfs with ĉµ(x) ∈ k[[x]] and m ∈ N, and it is sent to
∑
µ ĉµ(x)s

µF−mfs by ψ. The
latter is zero if and only if ĉµ(x) = 0 for any µ. This shows that ψ is an isomorphism.

An arbitrary element
∑
µ,β ĉµ,β(x)⊗sµ∂βxfs of k[[x]]⊗k[x]D[s]fs with ĉµ,β(x) ∈ k[[x]]

is sent to
∑
µ,β ĉµ,β(x)s

µ∂βxf
s by ψ ◦ φ. This implies that the image of ψ ◦ φ coincides

with D̂0[s]f
s. Thus ψ ◦ φ gives a natural isomorphism k[[x]]⊗k[x] D[s]fs ≃ D̂0[s]f

s and

it is naturally D̂0[s]-linear. Hence we get an exact sequence of D̂0[s]-modules

0 → D̂0[s]I1 → D̂0[s] → D̂0[s]f
s → 0

with natural maps. This completes the proof of Proposition 7.
Proof of Corollary 8. By Proposition 7 and the faithful flatness of D̂0 over D0, we

have

D0[s] ∩
(
annD̂0[s]

fs + D̂0[s]F
)
= D0[s] ∩

(
D̂0[s]

(
annD0[s]f

s +D0[s]F
))

= annD0[s]f
s +D0[s]F.

It follows that

Bk[[x]](f) = k[s] ∩
(
annD̂0[s]

fs + D̂0[s]F
)

= k[s] ∩D0[s] ∩
(
annD̂0[s]

fs + D̂0[s]F
)

= k[s] ∩
(
annD0[s]f

s +D0[s]F
)
= Bk[x]0(f).

The proof for BO0
(f) is the same.

3. Examples

Let us start with ‘classical’ results:

Lemma 10. Assume f ∈ k[[x]]p.
(i) Bk[[x]](u1f1, . . . , upfp) = Bk[[x]](f) if u1, . . . , up are units in k[[x]].
(ii) Bk[[x]](f) = k[s1, . . . , sp] · Bk[[x]](f1, . . . , fk) if fk+1, . . . , fp are units in k[[x]].
(iii) Let K ⊃ k be a field extension of k. Then BK[[x]](f) = K[s] · Bk[[x]](f), and

BK[x](f) = K[s] · Bk[x](f) if f ∈ k[x]p.
(iv) Suppose k ⊂ C and f ∈ k[x]p. Let a ∈ kn be such that f(a) = 0 and f is smooth

at a. Then Bloc,a(f) is generated by
∏p
j=1(sj + 1).

Proof. (i) In the free module k[[x]][1/(u1 · · ·upF ), s] · usfs = k[[x]][1/F, s] · usfs, we
have

∂xi · (usfs+1) =
(
(

p∑
j=1

sj
∂uj
∂xi

u−1
j + ∂xi

) · fs+1
)
us,

where us = us11 · · ·uspp and fs+1 = Ffs11 · · · fspp . Thus by an easy induction one can prove
that

D̂0[s] · (usfs+1) = (D̂0[s] · fs+1)us.
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Set f ′ = (u1f1, . . . , upfp). A polynomial b(s) ∈ k[s] belongs to Bk[[x]](f) if and only if

there exists P (s) ∈ D̂0[s] such that

b(s)fs = P (s) · fs+1. (3)

Multiplying us = us11 · · ·uspp , we get

b(s)f ′
s
= (P (s) · fs+1)us = Q(s) · (usfs+1)

= (Q(s)u−1
1 · · ·u−1

p )f ′
s1+1
1 · · · f ′sp+1

p

with some Q(s) ∈ D̂0[s]. This implies the equality (i).
(ii) By using (i), we may assume that fk+1 = · · · = fp = 1. Moreover it suffices to

assume k = p − 1. Set f ′ = (f1, . . . , fp−1). The inclusion k[s]Bk[[x]](f
′) ⊂ Bk[[x]](f) is

trivial. Let us prove the converse one. Set s′ = (s1, . . . , sp−1) and let b(s′, sp) ∈ Bk[[x]](f).
Then we have

b(s′, sp)f
′s′1sp ∈ D̂0[s

′, sp]f1 · · · fp−1f
′s′1sp .

Thus we see that b(s′, λ) belongs to Bk[[x]](f
′) for any λ ∈ k. Let us write b(s′, sp) =∑d

l=0 ck(s
′)slp. Let λ0, . . . , λd be pairwise distinct elements in k. Then there exist b0(s

′),
. . ., bd(s

′) ∈ Bk[[x]](f
′) such that

1 λ0 · · · λd0
...

...

1 λd · · · λdd



c0(s

′)
...

cd(s
′)

 =


b0(s

′)
...

bd(s
′)

 .

This is an invertible Vandermonde matrix, from which we deduce that each cl is in
Bk[[x]](f

′). This implies b(s′, sp) ∈ k[s]Bk[[x]](f
′).

(iii) The inclusion K[s] ·Bk[[x]](f) ⊂ BK[[x]](f) is trivial. Let π be a k-linear projection
of K to k and let b(s) belong to BK[[x]](f). Then applying π to (3), we see that π(b(s))
belongs to Bk[[x]](f). Now fix an arbitrary term order for K[s]. We may assume that
the leading monomial of π(b(s)) coincides with that of b(s). It follows that the set of
the leading monomials of K[x] · Bk[[x]](f) contains the set of the leading monomials of
BK[[x]](f). Together with the above inclusion, this implies the equality of the two ideals.

(iv) From (iii) it follows that Bloc,a(f) = Bk[x]a(f) equals BC[x]a(f), which coincides
with BC{x−a}(f) by Corollary 8. Thus (Briançon and Maynadier, 1999, Proposition 1.2)
implies (iv). 2

The following examples were computed by using Risa/Asir (Noro el al.). This software
is capable of computing Gröbner bases in the rings of polynomials and of differential
operators as well as primary decompositions of polynomial ideals over the field Q of
rational numbers. In the last paragraph of this section, we check that the results are also
valid over C. In the sequel, ⟨G⟩ denotes the ideal generated by the set G.

Example 1. This example is trivial in the sense that all the local Bernstein-Sato ideals
can be computed by using Lemma 10. Let us define f ∈ Q[x, y]3 by

f = (f1, f2, f3) = (x, y, 1− x− y).

Only with Lemma 10 one can say that given a ∈ C2, Bloc,a(f) is equal to:

9



Table 1. Primary decomposition for Example 2

i
√
Υi

√
Υi ∩Q[x, y] Υi ∩Q[s1, s2, s3]

1 ⟨s1 + 1, y⟩ ⟨y⟩ ⟨s1 + 1⟩

2 ⟨s2 + 1, y − 2x+ 1⟩ ⟨y − 2x+ 1⟩ ⟨s2 + 1⟩

3 ⟨s3 + 1, y − x2⟩ ⟨y − x2⟩ ⟨s3 + 1⟩

4 ⟨2s1 + 2s3 + 3, x, y⟩ ⟨x, y⟩ ⟨2s1 + 2s3 + 3⟩

5 ⟨2s2 + 2s3 + 3, x− 1, y − 1⟩ ⟨x− 1, y − 1⟩ ⟨2s2 + 2s3 + 3⟩

6 ⟨2s1 + 2s3 + 5, x, y⟩ ⟨x, y⟩ ⟨2s1 + 2s3 + 5⟩

7 ⟨2s2 + 2s3 + 5, x− 1, y − 1⟩ ⟨x− 1, y − 1⟩ ⟨2s2 + 2s3 + 5⟩

• C[s] = C[s1, s2, s3] for a /∈ {x = 0} ∪ {y = 0} ∪ {x+ y = 1},
• ⟨(s1 + 1)⟩ for a ∈ {x = 0}∖ {(0, 0), (0, 1)},
• ⟨(s2 + 1)⟩ for a ∈ {y = 0}∖ {(0, 0), (1, 0)},
• ⟨(s3 + 1)⟩ for a ∈ {x+ y = 1}∖ {(0, 1), (1, 0)},
• ⟨(s1 + 1)(s2 + 1)⟩ if a = (0, 0), ⟨(s1 + 1)(s3 + 1)⟩ if a = (0, 1), ⟨(s2 + 1)(s3 + 1)⟩ if
a = (1, 0).

By using Corollary 6 one has

Bglob(f) = ⟨(s1 + 1)(s2 + 1)(s3 + 1)⟩.

We notice that the global Bernstein-Sato ideal is different from all the local ones. On
the other hand, we find the following primary decomposition for I2 ⊂ Q[x, y, s1, s2, s3] in
Algorithm 1:

I2 = Υ1 ∩Υ2 ∩Υ3 with Υj = ⟨sj + 1, fj⟩,
which obviously recovers the results above.

Example 2. Define f = (f1, f2, f3) ∈ Q[x, y]3 by f = (y, y−2x+1, y−x2). The computed
primary decomposition of the ideal I2 in Algorithm 1 has seven primary components Υi.
For each of them, we present its radical, the radical of the intersection with Q[x, y], and
the intersection with Q[s1, s2, s3] in Table 1.

From these data, we can read off the local Bernstein-Sato ideal at each point of Q2.
For example, at (0, 0) we have

Bloc,0(f) = (Υ1 ∩Υ3 ∩Υ4 ∩Υ6) ∩Q[s1, s2, s3]

= ⟨(s1 + 1)(s3 + 1)(2s1 + 2s3 + 3)(2s1 + 2s3 + 5)⟩.

The global Bernstein-Sato ideal is

Bglob(f) = ⟨(s1+1)(s2+1)(s3+1)(2s1+2s3+3)(2s1+2s3+5)(2s2+2s3+3)(2s2+2s3+5)⟩,

which is different from all the local Bernstein-Sato ideals.

Example 3. Here f ∈ Q[x, y, z]2 is given by (f1, f2) = (z, x4 + y4 + 2zx2y2). This
important example is taken from (Briançon and Maynadier, 1999), where it is proved
that Bloc,0(f) is not principal. However, its generators have not been given explicitly
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Table 2. Primary decomposition for Example 3

i
√
Υi

√
Υi ∩Q[x, y, z] Υi ∩Q[s1, s2]

1 ⟨z, s1 + 1⟩ ⟨z⟩ ⟨s1 + 1⟩

2 ⟨f2, s2 + 1⟩ ⟨f2⟩ ⟨s2 + 1⟩

3 ⟨x, y, s2 + 1⟩ ⟨x, y⟩ ⟨(s2 + 1)2⟩

4 ⟨x, y, 2s2 + 1⟩ ⟨x, y⟩ ⟨2s2 + 1⟩

5 ⟨x, y, 4s2 + 3⟩ ⟨x, y⟩ ⟨4s2 + 3⟩

6 ⟨x, y, 4s2 + 5⟩ ⟨x, y⟩ ⟨4s2 + 5⟩

7 ⟨x, y, z, s1 + 2, 2s2 + 3⟩ ⟨x, y, z⟩ ⟨s1 + 2, 2s2 + 3⟩

8 ⟨x, y, z − 1, 2s2 + 3⟩ ⟨x, y, z − 1⟩ ⟨2s2 + 3⟩

9 ⟨x, y, z + 1, 2s2 + 3⟩ ⟨x, y, z + 1⟩ ⟨2s2 + 3⟩

as far as the present authors know. The ideal I2 ⊂ Q[x, y, z, s1, s2] has nine primary

components Υi (Table 2).

As a consequence, the local Bernstein-Sato ideal Bloc,0(f) is generated by two elements:

Bloc,0(f) = ⟨(s1 + 1)(s2 + 1)2(2s2 + 1)(4s2 + 3)(4s2 + 5)(s1 + 2),

(s1 + 1)(s2 + 1)2(2s2 + 1)(4s2 + 3)(4s2 + 5)(2s2 + 3)⟩,

while the global Bernstein-Sato ideal Bglob(f) is principal:

Bglob(f) = ⟨(s1 + 1)(s2 + 1)2(2s2 + 1)(2s2 + 3)(4s2 + 3)(4s2 + 5)⟩.

Example 4. Let us consider f = (f1, f2) = (z, x5 + y5 + zx2y3) ∈ Q[x, y, z]2. The

computed primary decomposition of I2 consists of twelve terms Υi (Table 3).

We conclude that Bglob(f) and Bloc,0(f) are equal and generated by the following three

elements:

• (s1 + 1)(s2 + 1)2(5s2 + 2)(5s2 + 3)(5s2 + 4)(5s2 + 6)(s1 + 2)(s1 + 3)(s1 + 4)(s1 + 5),

• (s1 + 1)(s2 + 1)2(5s2 + 2)(5s2 + 3)(5s2 + 4)(5s2 + 6)(5s2 + 7)(s1 + 2),

• (s1 + 1)(s2 + 1)2(5s2 + 2)(5s2 + 3)(5s2 + 4)(5s2 + 6)(5s2 + 7)(5s2 + 8).

Example 5. Here f ∈ Q[x, y, z]2 is given by (f1, f2) = (xz, x4 + y4 + 2zx2y2). The

computed primary decomposition of I2 consists of 12 components Υi (Table 4).

The local Bernstein-Sato ideal Bloc,0(f) at (0, 0, 0) coincides with the global Bernstein-

Sato ideal Bglob(f), which is generated by the following two elements:

• (s1 + 1)2(s2 + 1)(s1 + 4s2 + 2)(s1 + 4s2 + 3)(s1 + 4s2 + 4)

(s1 + 4s2 + 5)(s1 + 4s2 + 6)(s1 + 4s2 + 7)(s1 + 2),

• (s1 + 1)2(s2 + 1)(s1 + 4s2 + 2)(s1 + 4s2 + 3)(s1 + 4s2 + 4)

(s1 + 4s2 + 5)(s1 + 4s2 + 6)(s1 + 4s2 + 7)(2s2 + 3).
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Table 3. Primary decomposition for Example 4

i
√
Υi

√
Υi ∩Q[x, y, z] Υi ∩Q[s1, s2]

1 ⟨z, s1 + 1⟩ ⟨z⟩ ⟨s1 + 1⟩

2 ⟨f2, s2 + 1⟩ ⟨f2⟩ ⟨s2 + 1⟩

3 ⟨x, y, s2 + 1⟩ ⟨x, y⟩ ⟨(s2 + 1)2⟩

4 ⟨x, y, 5s2 + 2⟩ ⟨x, y⟩ ⟨5s2 + 2⟩

5 ⟨x, y, 5s2 + 3⟩ ⟨x, y⟩ ⟨5s2 + 3⟩

6 ⟨x, y, 5s2 + 4⟩ ⟨x, y⟩ ⟨5s2 + 4⟩

7 ⟨x, y, 5s2 + 6⟩ ⟨x, y⟩ ⟨5s2 + 6⟩

8 ⟨x, y, z, s1 + 2, 5s2 + 7⟩ ⟨x, y, z⟩ ⟨s1 + 2, 5s2 + 7⟩

9 ⟨x, y, z, s1 + 3, 5s2 + 7⟩ ⟨x, y, z⟩ ⟨s1 + 3, 5s2 + 7⟩

10 ⟨x, y, z, s1 + 4, 5s2 + 7⟩ ⟨x, y, z⟩ ⟨s1 + 4, 5s2 + 7⟩

11 ⟨x, y, z, s1 + 5, 5s2 + 7⟩ ⟨x, y, z⟩ ⟨s1 + 5, 5s2 + 7⟩

12 ⟨x, y, z, s1 + 2, 5s2 + 8⟩ ⟨x, y, z⟩ ⟨s1 + 2, 5s2 + 8⟩

Table 4. Primary decomposition for Example 5

i
√
Υi

√
Υi ∩Q[x, y, z] Υi ∩Q[s1, s2]

1 ⟨s2 + 1, f2⟩ ⟨f2⟩ ⟨s2 + 1⟩

2 ⟨s1 + 1, z⟩ ⟨z⟩ ⟨s1 + 1⟩

3 ⟨s1 + 1, x⟩ ⟨x⟩ ⟨s1 + 1⟩

4 ⟨2s2 + 3, s1 + 2, x, y, z⟩ ⟨x, y, z⟩ ⟨s1 + 2, 2s2 + 3⟩

5 ⟨s1 + 4s2 + 2, x, y⟩ ⟨x, y⟩ ⟨s1 + 4s2 + 2⟩

6 ⟨s1 + 4s2 + 3, x, y⟩ ⟨x, y⟩ ⟨s1 + 4s2 + 3⟩

7 ⟨s1 + 4s2 + 4, x, y⟩ ⟨x, y⟩ ⟨s1 + 4s2 + 4⟩

8 ⟨s1 + 4s2 + 5, x, y⟩ ⟨x, y⟩ ⟨s1 + 4s2 + 5⟩

9 ⟨s1 + 4s2 + 6, x, y⟩ ⟨x, y⟩ ⟨s1 + 4s2 + 6⟩

10 ⟨s1 + 4s2 + 7, x, y⟩ ⟨x, y⟩ ⟨s1 + 4s2 + 7⟩

11 ⟨s1 + 1, x, z⟩ ⟨x, z⟩ ⟨(s1 + 1)2⟩

12 ⟨4s2 + 5, s1 + 2, x, y, z⟩ ⟨x, y, z⟩ ⟨s1 + 2, 4s2 + 5⟩

Example 6. Set f = (f1, f2) = (z2, x6 + y6 + 2zx3y3) ∈ Q[x, y, z]2. The computed

primary decomposition of I2 consists of 15 components Υi (Table 5).

The local Bernstein-Sato ideal Bloc,0(f) at (0, 0, 0) is generated by the following two

12



Table 5. Primary decomposition for Example 6

i
√
Υi

√
Υi ∩Q[x, y, z] Υi ∩Q[s1, s2]

1 ⟨s2 + 1, f2⟩ ⟨f2⟩ ⟨s2 + 1⟩

2 ⟨2s2 + 1, x, y⟩ ⟨x, y⟩ ⟨2s2 + 1⟩

3 ⟨2s2 + 3, 2s1 + 3, x, y, z⟩ ⟨x, y, z⟩ ⟨2s1 + 3, 2s2 + 3⟩

4 ⟨2s2 + 3, x, y, z − 1⟩ ⟨x, y, z − 1⟩ ⟨2s2 + 3⟩

5 ⟨2s2 + 3, x, y, z + 1⟩ ⟨x, y, z + 1⟩ ⟨2s2 + 3⟩

6 ⟨3s2 + 1, x, y⟩ ⟨x, y⟩ ⟨3s2 + 1⟩

7 ⟨3s2 + 2, x, y⟩ ⟨x, y⟩ ⟨3s2 + 2⟩

8 ⟨3s2 + 4, x, y⟩ ⟨x, y⟩ ⟨3s2 + 4⟩

9 ⟨6s2 + 5, x, y⟩ ⟨x, y⟩ ⟨6s2 + 5⟩

10 ⟨6s2 + 7, x, y⟩ ⟨x, y⟩ ⟨6s2 + 7⟩

11 ⟨3s2 + 5, 2s1 + 3, x, y, z⟩ ⟨x, y, z⟩ ⟨2s1 + 3, 3s2 + 5⟩

12 ⟨s1 + 1, z⟩ ⟨z⟩ ⟨s1 + 1⟩

13 ⟨2s1 + 1, z⟩ ⟨z⟩ ⟨2s1 + 1⟩

14 ⟨s2 + 1, x, y⟩ ⟨x, y⟩ ⟨(s2 + 1)2⟩

15 ⟨3s2 + 4, 2s1 + 3, x, y, z⟩ ⟨x, y, z⟩ ⟨2s1 + 3, 3s2 + 4⟩

elements:

• (s1 + 1)(2s1 + 1)(s2 + 1)2(2s2 + 1)(3s2 + 1)(3s2 + 2)(3s2 + 4)(6s2 + 5)(6s2 + 7)

(2s2 + 3)(3s2 + 5),

• (s1 + 1)(2s1 + 1)(s2 + 1)2(2s2 + 1)(3s2 + 1)(3s2 + 2)(3s2 + 4)(6s2 + 5)(6s2 + 7)

(2s1 + 3).

The global Bernstein-Sato ideal Bglob(f) is different from Bloc,0(f) and is generated by
the following two elements:

• (s1 + 1)(2s1 + 1)(s2 + 1)2(2s2 + 1)(3s2 + 1)(3s2 + 2)(3s2 + 4)(6s2 + 5)(6s2 + 7)

(2s2 + 3)(3s2 + 5),

• (s1 + 1)(2s1 + 1)(s2 + 1)2(2s2 + 1)(3s2 + 1)(3s2 + 2)(3s2 + 4)(6s2 + 5)(6s2 + 7)

(2s1 + 3)(2s2 + 3).

3.1. Validity of the computations over C

First, let us state some general results useful in the sequel. We give proofs to these
results for the sake of completeness although they might be well-known to specialists.
Let k ⊆ K be two fields of characteristic zero.

Lemma 11. Let J be an ideal in k[y, z] = k[y1, . . . , yq, z1, . . . , zr]. Then

(K[y, z] · J) ∩K[y] = K[y] · (J ∩ k[y]).
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Proof. Let us consider g ∈ (K[y, z] · J)∩K[y]. Let f1, . . . , fr be generators of J and let
us write g =

∑
j ujfj with uj ∈ K[y, z]. Let el (l ∈ L) be a basis of the k-vector space

generated by all the coefficients of the uj ’s. Then one can write g ∈ ⊕lJel ⊂ ⊕lk[x, y]el.
Since g ∈ K[y], we obtain g ∈ ⊕l(J ∩k[y])el. The left-right inclusion is proven. The other
one being trivial, the proof is complete. 2

The following lemma can be proved in the same way:

Lemma 12. Let J be an ideal in k[x] = k[x1, . . . , xn].
(i) (K[x]J) ∩ k[x] = J .
(ii) If K[x]J is primary in K[x] then J is primary in k[x].

We shall denote by Gal(K/k) the Galois group of the extension K/k. If τ ∈ Gal(K/k)
then we shall also denote by τ the induced ring automorphism of K[x] = K[x1, . . . , xn].

Lemma 13. Assume that K/k is a Galois extension. Let J ⊂ K[x] = K[x1, . . . , xn] be
an ideal. Suppose τ(J) ⊂ J for any τ ∈ Gal(K/k). Then there exists an ideal J0 ⊂ k[x]
such that J = K[x]J0.

Proof. Given τ ∈ Gal(K/k), we have τ−1(J) ⊂ J , from which we deduce that τ(J) = J .
Let G be the reduced Gröbner basis of J with respect to a fixed term order. In view of

Buchberger’s criterion, we see that τ(G) is also the reduced Gröbner basis of J for any
τ ∈ Gal(K/k). Therefore, τ(g) = g holds for any g ∈ G. Thus, τ fixes each coefficient of
g. Since τ is arbitrary and the extension K/k is Galois, we get g ∈ k[x]. 2

Proposition 14. Let Υ be a primary ideal of k[x] = k[x1, . . . , xn] and K be a field
containing the algebraic closure of k. If the radical of K[x]Υ is a prime ideal of K[x],
then K[x]Υ is a primary ideal of K[x].

Proof. Take an irredundant primary decomposition

K[x]Υ =

m∩
j=0

ΥK
j (4)

in K[x]. We assume by contradiction that m ≥ 1.
The algorithms for computing a primary decomposition imply that there exists a finite

Galois extension K′ of k such that ΥK
j are defined over K′ (see e.g. (Greuel and Pfister,

2002, Chapter 4)). Then the field extension from K′ to K is trivial in the sense that the
primarity of each component is preserved. Thus we may now assume K′ = K.

Since the radicals
√
ΥK
j are distinct and

√
K[x]Υ is prime, we may assume, without

loss of generality, that
√
ΥK

0 =
√
K[x]Υ and the dimension of

√
ΥK
j is less than that of√

K[x]Υ for j = 1, . . . ,m.
Let τ be an element of the Galois group Gal(K/k). Then

K[x]Υ =

m∩
j=0

τ(ΥK
j ) (5)
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is also an irredundant primary decomposition. Since the non-embedded primary compo-
nents are unique, we have τ(ΥK

0 ) = ΥK
0 . Since τ ∈ Gal(K/k) is arbitrary, this implies,

by Lemma 13, that ΥK
0 is defined over k, i.e., there is an ideal Υ0 of k[x] such that

ΥK
0 = K[x]Υ0. By Lemma 12 (2), Υ0 is primary in k[x].
For each j = 1, . . . ,m, by Lemma 13, there exists an ideal Υj of k[x] such that

K[x]Υj =
∩

τ∈Gal(K/k)

τ(ΥK
j ). (6)

Moreover, Υj is primary in k[x]. Indeed, assume f, g ∈ k[x] satisfy fg ∈ Υj and f ̸∈ Υj .
Then there exists τ ∈ Gal(K/k) such that f ̸∈ τ(ΥK

j ). Since f is fixed by every element

of Gal(K/k), it follows that f /∈ τ(ΥK
j ) for any τ ∈ Gal(K/k). In particular, f /∈ ΥK

j .

Hence there exists an integer ν such that gν ∈ ΥK
j . Since g

ν = τ(gν) ∈ τ(ΥK
j ) for any

τ ∈ Gal(K/k), we have gν ∈ K[x]Υj , which implies, by Lemma 12 (1), gν ∈ Υj .
Combining equalities (6) and (5), we get

K[x]Υ =

m∩
j=0

(K[x]Υj).

Using Lemma 12 (1), we obtain a (not necessarily irredundant) primary decomposition
in k[x]:

Υ =

m∩
j=0

Υj .

Since Υ is primary and dim(Υ) = dim(Υ0) > dim(Υj) for j ≥ 1, the uniqueness of
the number of components in irredundant primary decomposition implies that Υ0 ⊂ Υj
for j = 1, . . . ,m. Hence we get

ΥK
0 = K[x]Υ0 ⊂ K[x]Υj =

∩
τ∈Gal(K/k)

τ(ΥK
j ) ⊂ ΥK

j

for j = 1, . . . ,m. This contradicts the irredundancy of (4). 2

Let us return to the validity proof of the examples over C. For a given f ∈ Q[x]p with
x = (x1, . . . , xn), we compute the ideals I, I1, I2 introduced after Lemma 1 which are
defined over Q, i.e., with k = Q. We denote by IC, IC1 and IC2 the ideals defined over C
obtained (theoretically) by the same processes but with k = C. Then it is easy to see
that

IC = DC[x]⟨t, ∂t⟩ · I, IC1 = DC[x][s] · I1, IC2 = C[x, s] · I2.
Thus the construction is the same over Q and over C up to Step 2 of Algorithm 1.

Claim. Let I2 = Υ1 ∩ · · · ∩ Υr be a primary decomposition of I2 in Q[x, s] for f of
Examples 1–6. Then

C[x, s]I2 = (C[x, s]Υ1) ∩ · · · ∩ (C[x, s]Υr)

is also a primary decomposition in C[x, s].

Proof. By Proposition 14, it suffices to prove that each C[x, s]
√
Υi is prime in C[x, s].

In all the examples,
√
Υi is either generated by first degree polynomials, or of the form
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Table 6. Timing data (in seconds)

Input Step 1 Step 2 Step 3 Total time Step 2 (HE)

Example 2 0.1 8.6 0.8 9.5 0.5

Example 3 0.1 1.3 0.8 2.2 0.6

Example 4 1.0 211.2 4.2 216.4 7.8

Example 5 0.2 68.8 7.6 76.6 46.1

Example 6 2.3 343.4 23.9 369.6 114.6

Example 7 0.5 17.0 0.8 18.3 0.5

Example 8 0.1 45.4 1.6 47.1 1.7

Example 9 0.9 – 34.0 (171.7) 136.8

⟨sj + 1, fj⟩ with a polynomial fj of degree greater than one (j = 3 for Example 2 and
j = 2 for Examples 3–6). In the first case, C[x, s]

√
Υi is obviously prime. It remains to

analyse the second case.
We have a ring isomorphism C[x, s]/⟨s1 + 1, fj⟩ ≃ C[x, s2, . . . , sp]/⟨fj⟩. In view of

this relation, it is enough to prove that each fj is irreducible over C. For Example 2,
f3 = y − x2 is obviously irreducible over C. For Examples 3–6, each f2 has a form
f2 = u(x, y)+ v(x, y)z with polynomials u(x, y) and v(x, y) in x, y. Since f2 is first order
with respect to z, it is reducible over C if and only if u(x, y) and v(x, y) have a non-
constant common factor in C[x, y], which is obviously not the case since each v(x, y) is a
monomial. 2

Now that the claim is proved, applying Proposition 4 and Lemma 11 we get, for any
α ∈ Cn,

Bloc,α(f) =
∩
i∈σα

((C[x, s]Υi) ∩ C[s]) = C[s] · (
∩
i∈σα

(Υi ∩Q[s])),

where σα = {i | 1 ≤ i ≤ r, α ∈ V ((C[x, s]Υi) ∩ C[x])}. Notice that by Lemma 11,
(C[x, s]Υi) ∩ C[x] = C[x](Υi ∩ Q[x]). Consequently the computations of Examples 1–6
done over Q are also valid over C. That is, they provide us with stratifications over C
such that the local Bernstein-Sato ideal remains the same on each strata.

4. Some remarks on the implementation

Our implementation is realized as a library file “bsi” of Risa/Asir, which will be
contained in its distribution (Noro el al.) and/or will be put on the website of the second
named author. Table 6 shows the running time (in seconds) of each step of Algorithm
1 on 2.2GHz Intel Core 2 Duo processor with 2GB RAM. In the table, Example 7
is f = (x3 + y2, x2 + y3), Example 8 is f = (x, x + y2, x + z2), and Example 9 is
f = (xyz, x3+y3+z3). The local Bernstein-Sato ideals for Examples 7, 8, 9 at the origin
are principal.

At least for these examples, Step 2 is the most time-consuming part, where the elim-
ination is done in one step. Eliminating variables one by one in a suitable order often
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speeds up the computation of Step 2 as is shown in the right-most column (HE for heuris-
tic elimination) of the table. However, it would be difficult to predict the fastest strategy
in advance. Step 1 should be improved by adopting the alternative method of Briançon
and Maisonobe (2002), as was suggested by Ucha and Castro (2004) and Gago-Vargas et
al. (2005). This would require computations in a ring of differential-difference operators,
which are not yet available with Risa/Asir.

At the time of this writing, the authors do not know any other systems which are
capable of computing local Bernstein-Sato ideals. However, a computer algebra system
Singular (Greuel and Pfister (2002)) provides a package “dmod.lib” (Levandovskyy and
Morales (2008)) for computing global Bernstein-Sato ideals by the method of Briançon
and Maisonobe (2002). In our experiments, the performance of our implementation for
global Bernstein-Sato ideals is comparable to that of “dmod.lib”.
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pour plusieurs fonctions analytiques. Compositio Math. 64, no. 2, 213–241.

Ucha-Enŕıquez, J. M., Castro-Jiménez, F. J. , 2004. On the computation of Bernstein-
Sato ideals. J. Symbolic Comput. 37, no. 5, 629–639.

18


