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Example A:

/

Question. In what sense , this object is

“knotted” or “unknotted” ?

In this talk, the answer will be “B-unknotted”
but “knotted”, “y-knotted” and “I'-knotted”
under some definitions introduced from now.



Example B: Proteins attached to a cell surface

Some points of S. B. Prusiner’s theory are:

(1) By losing the N-terminal region, Prion precursor
protein changes into Cellular PrP (PrP¢) or Scrapie PrP
(PrP3¢), and a-helices change into B-sheets.

(2) The conformations of PrP¢ and PrP>3¢ may differ
although the linear structures are the same.

(3) There is one S-S combination.

@7Z. Huang et al., Proposed three-dimensional Structure for
the cellular prion protein, Proc. Natl. Acad. Sci. USA,
91(1994), 7139-7143.

@ K. Basler et al., Scrapie and cellular PrP isoforms are
encoded by the same chromosomal gene, Cell 46(1986),
417-428.



Prion Precursor Protein

Signal peptid N-terminal region
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From:

K. Yamanouchi & J. Tateishi Editors, Slow Virus Infection and Prion (in
Japanese), Kindaishuppan Co. Ltd. (1995) -



Definition. A prion-string is a spatial graph
K=¢ (K)Ua(K) inthe upper half space H3
consisting of S-S loop ¢4(K) and GPI-tail a(K)
joining the S-S vertex in ¢(K) with the
GPl-anchor in 0H3.
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Topological models of prion-proteins
(cf. [). Math. System Sci. 2012])

[J. Math. System Sci. 2012]

A. Kawauchi and K. Yoshida, Topology of prion proteins,
Journal of Mathematics and System Science 2(2012), 237-248.



Example C: A string-shaped virus

A virus of EBOLA
haemorrhagic fever

)
1
I
!
’ |}

.'

http://www.scumdoctor.com/Japanese/disease-prevention/infectious-
diseases/virus/ebola/Pictures-Of-The-Effects-Of-Ebola.html



1. Several notions on unknotted
graphs



1.1. A based diagram and a monotone diagram

Let [ be a graph without degree one vertices, and
G = G(I) a spatial graph in R3. Let T, (i=1,2,...,r) be
an ordered set of the components of I, and

G, =G(I;) the corresponding spatial subgraph of
G =G(l). Let T, be a maximal tree of G..
Note: We consider a topological graph without

degree 2 verticies, so that T, =@ if G, is a knot or
link, and T, = one vertex if G, has just one vertex
(of degree=3).



Let T=T, UT,U ... UT . Call it a base of G.
Note: There are only finitely many bases of G.
G is obtained from a basis T by attaching edges
(i.e., arcs or loops)toT.

et D be a diagram of a spatial graph G=G(I'), and
D+ the sub-diagram of D corresponding to T.
et cy(D;) be the number of crossing points of D

whose upper or lower crossing points belong to D-.



Definition. D is a based diagram (on base T),
written as (D;T) if cy(D+)=0.

& M




Lemma. For Vbase T of G, Vdiagram D of G
is deformed into a based diagram on T by
generalized Reidemeister moves.

The generalirez Reidemeister moves:



Let a be an edge of G=G(I) attaching to a base T.

Definition. An edge diagram D, in a diagram

D of G is monotone if:

- &=




A sequence on the edges of a based graph (G ,T)
is regularly ordered if an order on the edges

such that any edge belonging to G. is smaller
than any edge belonging to G; for i<j is specified.



Definition. A based diagram (D;T) is monotone

if there is a regularly ordered edge sequence Q ;
(i=1,2,---,m) of (G,T) such that Dy is monotone
and Dg; is upper than Do, fori<;j.

N5/




1.2. Complexity
Definition.
The warping degree d(D;T) of a based diagram
(D;T) is the least number of crossing changes on
edge diagrams attaching to T needed to obtain a
monotone diagram from (D;T).

The crossing number of (D;T) is denoted by c(D;T).

If D is a knot or link diagram or an edge diagram,
then the warping degree and crossing number of
D are denoted by d(D) and c(D), respectively.



A similar notion for a knot or link is given in:

[Lickorish-Millett 1987] W. B. R. Lickorish and K. C. Millett, A
polynomial invariant of oriented links, Topology 26(1987), 107-141.

[Fujimura 1988] S. Fujimura, On the ascending number of knots,
thesis, Hiroshima University, 1988.

[Fung 1996] T. S. Fung, Immersions in knot theory, a dissertation,
Columbia University, 1996.

[Kawauchi 2007] A. Kawauchi, Lectures on knot theory (in Japanese),
Kyoritu Shuppan, 2007.

[Ozawa 2010] M. Ozawa, Ascending number of knots and links.
J. Knot Theory Ramifications 19 (2010), 15-25.

[Shimizu 2010] A. Shimizu, The warping degree of a knot diagram,
J. Knot Theory Ramifications 19(2010), 849-857.



Properties of the warping degree
(1) For the warping degree d of an oriented
edge dlagram D,

d(D)+ d(-D,) =c(D,),

d(D,) = min{d (D,), d(-D,)}.

Example. d( f)—*) =1, for

9 &l .
(C(- =1, d( “‘\“;-) )=3.




(2) [Shimizu 2010]
For an oriented knot diagram D,

d (D)+d(-D) = ¢(D)-1,

where the equality holds if and only if D is an
alternating diagram.



Definition.

The complexity of a based diagram (D;T) is the
pair cd(D;T)= (c(D;T), d(D;T)) together with the
dictionary order.

d(D;T)=c(D;T) implies:

Note (A. Shimizu).
The dictionary order on cd(D;T) is equivalent to
the numerical order on ¢(D;T)?+d(D;T) .




Definition.
The complexity of a spatial graph G is

¥(G) = min{cd(D;T)| (D;T) € [Dgl}
(in the dictionary order).

Let y(G)= (c, (G), d,(G)).

Our basic viewpoint of complexity. This complexity

is reducible by a crossing change \/\ & /\/ or
. NS L : :

asp |ce/\=>> (or . until we obtain a graph

in a plane.




(1) If d,(G)>0, then 3 G" with y(G")< y(G) by a
crossing change.

d,(G)=0 € G is equivalent to G" with a
monotone diagram (D’;T’) with ¢, (D’;T")=c,(G).

(2) If ¢, (G)>0, then 3 G" with y(G")< y(G) by a
splice.
¢, (G)=0 < Gis equivalent to a graph in a plane.



1.3. The warping degree and an unknotted graph

Definition.
The warping degree of G is :
d(G)= min{d(D;T)| (D;T) E[Dgl}

Definition.
G is unknotted if d(G)= 0.

When I consists of loops,
G is unknotted < G s a trivial link.



Assume I has a vertex of degree=3.
Lemma 1.3.1. For V G, dfinitely many crossing
changes on G to make G with d(G)=0.

Lemma 1.3.2. ForV given graph [ , 3 only finitely

many G of [ with d(G)=0 up to equivalences.

Lemma 1.3.3. If d(G)=0, then 3T such that
G/T is equivalentto STV SV ... VSICR2




Lemma 1.3.4. A connected G with d(G)=0 is
deformed into a basis T by a sequence of edge

reductions:
L Z

Corollary 1.3.5. For V G with d(G)=0, 3T such
that every edge (arc or loop) attachingto T is in

a trivial constituent knot.



Given D;, the cross index of a; and a; (i#j):

cross index =0 cross index =1

The total cross index of I on D5 :
e(l; D;) =2, €lo, ).
Lemma 1.3.6. Let d(G)=0. Then
min{c(D;T)|(D;T) €[D¢], d(D;T)=0} = &(T; Dy).




Conway-Gordon Theorem.

Every spatial 6-complete graph K, contains a
non-trivial constituent link.

Every spatial 7-complete graph K, contains a
non-trivial constituent knot.

&

An unknotted K, An unknotted K,




1.4. The y-warping degree and a y-unknotted
graph

Definition.
The y-warping degree of G is the number d, (G)

for the complexity y(G)= (c, (G), d,(G)) of G.

Definition. G is y-unknotted if d, (G) =O0.

y-unknotted=unknotted



1.5. A l-unknotted graph and the (y,l)-warping
degree

Let v(I') =min{y(G) | G is a spatial graph of I}.

Definition.
A -unknotted graph G is a spatial graph of I
with y(G) = y(I).




Note.

(1) Let y()= (c(T), d\(T)). Then d (I)=0.
[-unknotted=y-unknotted=>unknotted.

(2) ¢, (=0 if and only if I"is a plane graph.

(3) A spatial plane graph G is -unknotted
< G is equivalent to a graph in a plane.



Definition.

O = {unknotted graphs of I'}.

0% = {y-unknotted graphs on (D;T) €[D]

Y
={y-un

O ={l-un

Knottec

Then 00 0O, 2 O,.

grap

with cd(D;T)=y(G)}.

G i -
O, = U{O; |G is a spatial graph of I'}
knotted grap

ns of I}.

NS}

Note: OF CO; or 0¥NO; = ¢ for every G.



Definition.
The (y,M)-warping degree d (G) of G is:

d',(G) =d,(G)+ p(0%,0,).

(p denotes the Gordian distance.)
By definition, d(G)= d,(G)= dE(G).

dE(G) =0 if and only if G is l-unknotted.



1.6. Examples

Example 1.6. 1. Let G = @ :

G has ¢ (G)=2, for G has a Hopf link as a
constituent link.

d(G)=d,(G)=0.

Because G is a planar graph, if G is -unknotted,
then ¢, (G)=0, a contradiction.

Hence dE(G) =1.




Lemma 1.6.2. (1) ([Fung 1996] , [Ozawa 2010])
If K is a knot with d(K)=1, then K is a non-trivial
twist knot.

(2) If Gis a B-curve with d(G)=1, then the 3
constituent knots of G consist of two trivial

knots and one non-trivial twist knot .



Example 1.6.3. (([Fung 1996] , [Ozawa 2010],

[Shimizu 2010])
-
For K= 5,, we have

¢, (K)=5, d(K)=1<d (K)= d\, (K)=2.



Example 1.6.4.

For K=g§ 6,,

¢, (K)=6, d(K)=d (K)= d\, (K)=2.
In fact, d'; (K)=2:

By Lemma, d(K)=2 (, for K is not any twist knot).



Example 1.6.5. (Kinoshita’s 0-curve)

For G= @, we have

c,(G) =7 and d(G)=d (K)=d' (G)=2.



Y = (W
a based diagram of G a monotone diagram

0%=0r implies p(0%,0,)=0. Hence d,(G)=d' (G).
Since G is non-trivial and the 3 constituent knots

are trivial, we have d(G)=2 by Lemma.
Hence, if ¢, (G)=7, then d(G)=d, (G)= dE (G)=2.



By the diagram, ¢ (G) =7. We show ¢ (G) =7.
By the classification of algebraic tangles with
crossing numbers=6 in:

[Moriuchi 2008] H. Moriuchi, Enumeration of algebraic tangles
with applications to theta-curves and handcuff graphs,
Kyungpook Math. J. 48(2008), 337-357

the Kinoshita’s 6-curve G cannot have any
based diagram with crossing number =6..
Hence c (G)=7.



1.7. A B-unknotted graph

Forabase T=T,UT,U...UT of G, let B be the
disjoint union of mutually disjoint 3-ball
neighborhoods B. of T. in S° (i=1,2,...,r).

Let B¢ = cl(S3-B) be the complement domain of B
with L=B¢MN G=a,Ua,U..Ua_  an n-string tangle
in B¢, called the complementary tangle of T.




Definition. G is B-unknotted if da base T of G
whose complementary tangle (B¢,L) is trivial.

C> " 2D
C ) (2

A trivial complementary tangle

Example 1.7.1. For a O-curve I, d ee-many

B-unknotted graphs G of I up to equivalences.




Example 1.7.2. Triviality of the complementary
tangle (BS,L) depends on a choice of a base.

Example 1.7.3. If Gis B-unknotted, then G is a free
graph (i.e., m,(R3-G) is a free group), but the

converse is not true.

A free B-knotted graph




By definitions and examples explained above,
we have:

Theorem.
[-unknotted=y-unknotted=unknotted
= B-unknotted = free.

These concepts are mutually distinct.

Note: Given a [, donly finitely many N-unknotted,
v-unknotted, or unknotted graphs of I.




2. Several notions of unknotting
numbers of a spatial graph



2.1. The unknotting number

Let O = {unknotted graphs of I}.

Definition.

The unknotting number u(G) of a spatial graph G

of is the distance from G to O by crossing

changes on edges attaching to a base:

u(G) = p(G,0).



2.2. A B-unknotting number

Let Og = {B-unknotted graphs of I'}.

Definition.

The B-unknotting number u;(G) of a spatial graph

G of I'is the distance from G to Og by crossing
changes on edges attaching to a base:

us(G) = p(G,0p).



2.3. A y-unknotting number
Given G, let
{Dg, 1= {(D;T)E[D¢l | c(D;T)=c,(G)}
(the set of minimal crossing based diagrams).

Definition.

The y-unknotting number u, (G) of a spatial graph

G of I'is the distance from {Dg , } to O by crossing
changes on edges attaching to a base:

UV(G) = p({DG,V 1,0).
Note. G is y-unknotted < u,(G) =0.




2.4. I-unknotting number

Let O={l-unknotted graphs}.

Definition.

The MN-unknotting number u'(G) of G is the distance

from G to O, by crossing changes on edges

attaching to a base:
u'(G) = p(G,0y)



Definition.
The (y,lN-unknotting number UE (G) of G is the
distance from {Dg} to O; by crossing changes on

edges attaching to a base:
UC (G) =p({DG,y};Or)-



2.5. Dsitinctness of the unknotting numbers

Theorem 2.5.1. The unknotting numbers
ug(G), u(G), u'(G), u, (G), uc (G)

of V spatial graph G of VY graph I are mutually

distinct topological invariants and satisfy the

following inequalities :

up(G) = u(G)={u, (G),u"(G)} = u'(G).



Proof. The inequalities are direct from definitions.

We show that these invariants are distinct.

(1)
aee

G has ¢ ,(G)=2 and hence u,(G)=u(G)=u,(G)=0.
On the other hand, we have
u"(G)=d, (6)=1,
for G is a spatial graph of a plane graph with a Hopf
link as a constituent link and hence not l-unknotted.



(2) ( ) ¢ )
Let G= g\ a3 = é\

G=10;4 has u(10g)=2 and u, (104)=3 by
[Nakanishi 1983] and [Bleiler 1984] . Hence

ug(G)= u(G) =u’(G)=2< u, (G)=ul, (G)=3.

[Nakanishi 1983] Y. Nakanishi, Unknotting numbers and knot
diagrams with the minimum crossings,

Math. Sem. Notes Kobe Univ. 11 (1983), no. 2, 257-258.

[Bleiler 1984] S. A. Bleiler, A note on unknotting number, Math.
Proc. Cambridge Philos. Soc. 96 (1984), 469-471.



(3)
G = \) Then ug(G)=0.

In fact: @ _ C@

Since G is a ©-curve,
u(G)=0 < G is isotopic to a plane graph.
G has a trefoil constituent knot.
Hence u(G)=1.
Thus, we have u(G) =u'(G)=u, (G)=urv(G)=1.//



2.6. The values of the unknotting numbers

Theorem 2.6.1. For V given graph I and Vinteger

n=1, 3 eo-many spatial graphs G of I' such that
Ug(G)= u(G)=u, (G)= u'(G)= uc (G)=n.



Infinite cyclic covering homology of a spatial graph

For a spatial graph G of I in S3=R3 U {oeo}with a
base T and oriented edges a.(i=1,2,...,s)

attaching to T.

Let E(G)=cl(S3-N(G)) for a regular neighborhood
N(G) of G in S3.

Let x: H,(E(G))—>Z be the epimorphism sending the
meridians of a. (i=1,2,...m) to 1EZ.

Let E(G)..—~> E(G) be the oo-cyclic cover of E(G)
associated with .




Let A=Z[t,t1].
The homology H,(E(G)..) is a finitely generated
A-module which we denote by M(G,T)...
We take an exact sequence (over A)

N> AP > M(G,T)., >0,
where we take a=b. A matrix A(G,T),, over A
representing the homomorphism A? > AP s

called a presentation matrix of the module
M(G,T)...




For an integer d=0, the d* ideal £,(G,T).. of
M(G,T).. is the ideal generated by all the
(b-d)-minors of A(G,T)...

The ideals €,4(G,T).. (d=0,1,2,3,...) are invariants of
the A-module M(G,T)...

Let (A4) be the smallest principal ideal containing
£4(G,T)..- Then the Laurent polynomial AjEA is
called the d*" Alexamder polynomial of M(G,T)...
If G is a knot (with T=¢), then A, €A is called

the Alexander polynomial of the knot G.




Assume that G* is obtained from G by k crossing
changes on a, (i=1,2,...,m). Then x induces the
epimorphism x*:H,(E(G*))>Z.

Let m(G,T)., and m(G*,T).. be the numbers of
minimal A-generators of the A-modules M(G,T)..
and M(G*,T).., respectively.

We use the following lemma:

Lemma A (cf. [Kobe J. Math. 1996]).
| m(GiT)oo' m(G*,T)oo | ék

[Kobe J. Math. 1996]
A. Kawauchi, Distance between links by zero-linking twists,
Kobe J. Math.13(1996), 183-190.




=00

/ N (-1)-twiston O

(-1)-crossing (+1)-crossing

G* is obtained from G by k crossing changes on the
edges a, (i=1,2,...,m).

G is also obtained from G* by k crossing changes on
the corresponding edges a.” (i=1,2,...,m).



Let W=E(G) x| U,y DX D2

be a surgery trace from E(G) to E(G™) by
2-handles D2 X D% (i=1,2,...,n), which is also a
surgery trace from E(G*) to E(G) by the “dual” 2-
handles D? X D2 (i=1,2,...,n).

E(G) ~, wi | e

\
N (OE(G)) X I=(0E(G*)) X |



By construction, x and x* extend to an
epimorphism x*:H,(W)->Z.

Let (W_,;E(G)..,E(G*)..) be the o=-cyclic cover of
(W;E(G), E(G*)) associated with x*.

Let m(W._.) be the minimal number of
N-generators of the A-module H,(W.,).



Then we have
m(W..) =m(G,T)..,
m(W..) = m(G*,T)...

Because, the natural homomorphisms
,(E(G))=> (W) and 1, (E(G))—> 1, (W)
are onto, so that the natural homomorphisms
H1(E(G)..)= Hy(W..) and Hy(E(G)..)=> Hy(W..)
are onto.



By the exact sequence of the pair (W.,,E(G)..)
H,(W..,E(G)..)> H,(E(G)..) 2 H{(W.)—>0

and H,(W_,E(G)..)=A¥, we obtain

m(GT). = k+m(W_) = k+m(G*T)...
Similarly,

m(G*T). = k+m(W_) = k+m(G,T)...
Thus, we have

|Im(G,T)..- m(G*T).. | =k.//



Proof of Theorem 2.6.1.
Let G, be a l-unknotted graph.
Let K be a trefoil knot, and K(n) the n-fold
connected sum of K. Then

u(K(n))=u,(K(n))=n for Vn=1.
Let G =G #K(n) be the connected sum of K(n)
and an edge attaching to a base T, of G,.
Then u’ (G)= nsince ¢ (G) =c,(Gy )+c, (K(n)) .

We show ug (G)= n.



Assume that uy(G)=k. Then a B-unknotted graph
G*is obtained from G by k crossing changes on
edges a.(i=1,2,...,m) attaching to a base T in G.

We choose orientations on a. (i=1,2,...,m) as
it is stated in the following two cases.
Case (l): K(n) isin an edge a..

Case (lI): K(n) is in a component T’ of the base T.

In Case (l), take any orientations on a, (i=1,2,...,m).



In Case (ll), let T, and T’, be the components of
T’-{p} for a point p €K(n), and q, (i=1,2,...,u) the
edges joining T', and T,

We take orientations of the edges a, (i=1,2,...,u)

going from T’, to T'; and any orientations of the
other edges a, (i=u+1,u+2,...,m).

)
/"’f/ '
O(Z
Kn) _\
A . (\/-3 g,
'T‘, P T7
Az




Let x: H,(E(G))—>Z be the epimorphism sending
the oriented meridians of a, (i=1,2,....m) to 1E€Z.
Then we have

in Case(l), M(G,T)..=A™1 @& [N/(A(t))]", and
in Case(ll), M(G,T).. = A™L @ [A/(A(tY)]".

In either case, we have m(G,T) ., = m+n-1.



On the other hand, m,(E(G*)) is a free group of
rank m and hence M(G*,T)_ =A™,

Thus, m(G*,T)..=m-1.

By Lemma A, |(Mm(G,T)..-m(G*T). |=n=k.
Hence ug (G)= n and

ug(G)= u(G)= u, (G)= u"(G)= " (G)=n. //



3. Applying the unknotting notions

to a spatial graph attached to a
surface



3.1. A spatial graph attached to a surface

Let I be a finite graph, and v(I' ) the set of degree

one vertices. Assume |v(I')| 2.

Let F be a compact surface in R3.

Definition.

A spatial graph on F of I is the image G of an

embedding f: I = R3 such that

(1) G meets F with GN F=f (v(I'))= v(G),

(2) G-v(G) is contained in one component of R3-F,

(3) 3 a homeomorphism h: R3 > R3 such that
h(GUF) is a polyhedron.




F does not need 0F=¢ .

Though ', G or F may be disconnected, but assume
that |FFNv(G)| =2 for ¥ component F’ of F.
lgnhore the degree 2 vertices in G.

Definition. A spatial graph G on F is equivalent to a

spatial graph G' on F’ if d an orientation-preserving
homeomorphism h: R® - R3 such that h(FUG)=F UG'.

Let [G] be the class of spatial graphs G" on F’ which are
equivalentto G on F.



3.2. An unknotted graph on a surface and
the induced unknotting number

Definition. G on F is unknotted if da 2-cell A’ in

Y component F’ of F such that the union A of all

A\’ contains v(G) and the shrinked spatial graph
GM with v(GA)=¢ (i.e. a spatial graph obtained
from G by shrinking ¥V A’ into a point) is
unknotted in R3.




Note. If VF =S%or a 2-cell, then [G”] does not
depend on a choice of A.

However, in a genral F, [G" ] depends on a choice
of A, although the shrinked graph T™ with v(I'* )= @
associated with F is uniquely defined.




Because V G” is a spatial graph of the same
graph ', we have:

Lemma. For V given graph I'and V given F in R3,

3 only finitely many unknotted graphs G of I on
F up to equivalences.



Let O = {unknotted graphs of '*}.

Definition.

The unknotting number u(G) of a spatial graph G

of [ on F is the distance from the set {G"} to O by

crossing changes on edges attaching to a base:

u(G) = p({G*},0).



3.3. A B-unknotted graph on a surface and

the induced unknotting number

Definition. G on F is B-unknotted if da 2-cell
A" in Y component F’ of F such that the union A

of all A’ contains v(G) and the shrinked spatial
graph G* with v(G*)=¢ is B-unknotted in R3.

unknotted = B-unknotted



Let Og = {B-unknotted graphs of I'"}.

Definition.

The B-unknotting number us(G) of a spatial graph

G of ['on F is the distance from the set {G"} to O

by crossing changes on edges attaching to a base:

UB(G) = p({G"},OB).



3.4. A y-unknotted graph on a surface and

the induced unknotting number

Definition. G on F is y-unknotted if 3a 2-cell

A" in Y component F’ of F such that the union A
of all A" contains v(G) and the shrinked spatial
graph G* with v(G?*)= ¢ is y-unknotted in R3.

v-unknotted=unknotted = B-unknotted



Given G, let
{DGA,V ={(D;T)&E [DGA] | C(D;T)=CV(GA), V G}

Definition.

The y-unknotting number u (G) of a spatial graph
G of l'on F is the distance from {Dgx ,} to O by

crossing changes on edges attaching to a base:

uy(G) = p({DGA,V }IO)'
Note. G on Fis y-unknotted < u, (G) =0.




3.5. -unknotted graph on a surface and the
induced unknotting numbers

Definition. G on F is [-unknotted if 3 a 2-cell
A" in Y component F’ of F such that the union A
of all A" contains v(G) and the shrinked spatial
graph G™ with v(G")=¢@ obtained from G by
shrinking ¥ A’ into a point is ["*-unknotted in R3.

[-unknotted=y-unknotted=>unknotted
= B-unknotted



Let O;.={I"-unknotted graphs}. Then O3 202 O..

Definition.
The MN-unknotting number u'(G) of G on F is the
distance from the set {G"} to O;. by crossing

changes on edges attaching to a base:
u'(G) = p({G"},014)
The (y,)-unknotting number uc (G) of Gon Fis the

distance from {Dg. ,} to O; by crossing changes on
edges attaching to a base: u?(G) =p({Dgn ,},Or4).



3.6. Properties on the unknotting numbers

Theorem 3.6.1. The topological invariants
ug(G), U(G), U"(G), u,(G), u',(G)

of V spatial graph G of VY graph I on V surface F

satisfy the following inequalities :

Us(G) = u(G)={u, (G),u"(G)} = ul(G),

and are distinct for some graphs G of some [ on
F=S~.



Theorem 3.6.2. For Vgiven graph I, V surface F

in R3and V integer n=1, 3 eo-many spatial
graphs G of [ on F such that

us(G)= u(G)=u, (G)= u"(G)=u' (G)=n.



Proof of Theorem 4.6.1. The inequalities are direct
from definitions.
We show that these invariants are distinct.

(1)
—)

G” has ¢, (G")=2 and hence ug(G)=u(G)=u,(G)=0.
On the other hand, we have
ur(G)=urv(G)=1,
for G/ is a spatial graph of a plane graph with a Hopf
link as a constituent link and hence not N-unknotted.




G"=104 has u(104)=2 and u, (104)=3
by [Nakanishi 1983] and [Bleiler 1984].

Hence

us(G)= u(G) =u’(G)=2< u, (G)=u', (G)=3.



(3)

Then ug(G)= 0. Since G" is a ©-curve, by definition,
u(G”)=0 < G*is isotopic to a plane graph.
Thus, u(G)=1 and we have
u(G) =u'(G)=u, (G)=u' (G)=1.//



Proof of Theorem 3.6.2.

Assume v(INz @.

Assume [ and F are connected for simplicity.

Let F be in the interior of a 3-ball BCS3, and
S2=0B.

Let G, be a l-unknotted graph on S%in B°=cl(S>-B)
and extend it to a l-unknotted graph G, on F by
taking in B a 1-handle H joining a 2-cell A, of S?
and a 2-cell A, of F and then taking |v(I)| parallel
arcsin H.




A l-unknotted graph G,on F A Tl-spatial graph Gon F



Note that G,"= G,/ A, and G;"= G,/ A, are
isotopic M-unknotted graphs in S3.

We take a -spatial graph G on F with v(G) CA,
such that G* =G/ A, is a connected sum G,"#K(n)
of an edge of G," (in a part of G,) and K(n)
attaching to a base of G;", where K(n) is the
n-fold connected sum of a trefoil knot K.

Then U, (G)= n.



We show ug (G) = n.

Let ug (G)=ug (G*') for G =G/ A’ for a 2-cell
A inF.

Assume that ug (G)=k and a B-unknotted graph
(GM') is obtained from G’ by k crossing
changes on edges a, (i=1,2,...,m) attaching to a
base T" in G/

As it is explained in the case v(l=F=¢, we
take orientations on the edges a, (i=1,2,...,m)
and take an epimorphism x: H,(E(G"'))=>Z .



By Lemma A, |m(GVT) . —m((G") ,T') .. | =k
Note that m((G*')T’) .. =m-1.

Let C'=GM MNBand G'=GM N B¢ Then GNM=G"UC’,
Let E(G")=cl(B*-N(G’)), E(C")=cl(B-N(C’)) and
0’E(C’)= E(C’) N OB.




Let E(G’).., E(C’).. and 0’E(C’)_, be the lifts of
E(G’), E(C’) and 0’E(C’) under the covering
E(G"')..~E(G?), respectively.
Let
M(G’).. = H,(E(G’)..) and
M(C’,0’C’)..= H,(E(C’)..,0’E(C’)..).



Lemma B. 3 a short exact sequence
0->M(G’).. > M(GN,T').. >M(C’,0°’C")., =0,
Further, the finite A-torsion part DM(C’,0’C’).. =0.

Proof. By excision,

Hy(E(GN).., E(G').)= Hy(E(C').., ’E(C)..).
Since H,(E(C’),0’E(C’))=0 for d=1,2, we see from
[Osaka J. Math. 1986]

A. Kawauchi, Three dualities on the integral homology of infinite
cyclic coverings of manifolds, Osaka J. Math. 23(1986),633-651.

that H,(E(C’)..,0’E(C’)..)=0 and M(C’,0°’C’) . is a
torsion A-module with DM(C’,0’C’)_.=0.




The homology exact sequence of the pair
(E(G*).., E(G")..) induces an exact sequence:
0-> H,(E(G')..) > H,(E(GV)..)

- H,(E(G").., E(G’)..) =0.
This sequence is equivalent to an exact
sequence

0->M(G')., - M(GNT').., >M(C’,0’C’)., =0.//



Note that M(G’)_ =M(GA,T)._, for a base T of GA
corresponding to the base T'of G/
By an argument of the case v(IN=F =9,

m(G’)., =m(GA,T) .= m+n-1
for the minimal number m(G’).., of A-generators
of M(G’) ...



Lemma C (cf. [Kobe J. Math,1987]).

Let M’ be a A-submodule of a finitely generated
A-module M. Let m” and m be the minimal
numbers of A-generators of M’” and M,
respectively. If D(M/M’) =0, then m’ = m.

[Kobe J. Math,1987]
A. Kawauchi, On the integral homology of infinite cyclic
coverings of links, Kobe J. Math. 4(1987),31-41.

Proof. For a A-epimorphism f: A™ 5 M, let
B=f-1(M’) C A™, which is mapped onto M.
Since A™/B is isomorphic to M/M’ which has
projective dimension =1, B is A-free, i.e., B=AP
with b=m. Hence m’ =b =m.//




By Lemma C,
m(GNT’)., =2m(G’).. = m+n-1.
Since m((G*’)’ ,T’) .. = m-1, we have
k= m(GVT) . —-m((GN)Y ,T). = n.
Hence ug (G)= n and

ug(G)= u(G)= u, (G)= u"(G)=u' (G)=n.//



Thank you for your attention.
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