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ABSTRACT
A planar graph is said to be trivializable if every regular projection produces a trivial

embedding for some over/under informations. Every minor of a trivializable graph is also
trivializable, thus the set of forbidden graphs is finite. Seven forbidden graphs for the
trivializability were previously known. In this paper, we exhibit nine more forbidden
graphs.
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1. Introduction

Let G be a finite graph. We consider G as a topological space in the usual way.

An embedding of G into R
3 or S3 is called a spatial embedding of G or simply a

spatial graph. A graph G is said to be planar if there exists an embedding of G
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into R
2. A spatial embedding of a planar graph is said to be trivial if it is ambient

isotopic to an embedding into R
2 ⊂ R

3.

A regular projection of G is a continuous map f̂ : G → R
2 whose multiple points

are only finitely many transversal double points away from the vertices of G. In

this paper Ĝ denotes the image of a regular projection of G. Let π : R
3 → R

2 be

the natural projection. Then, for a regular projection f̂ of G, if we give over/under

information to each double point then the regular projection represents a spatial

embedding f : G → R
3 such that f̂ = π ◦ f . Then we say that f is obtained from f̂

and also call f̂ a regular projection of f . A regular projection f̂ of a planar graph G

is called a knotted projection [7] if all spatial embeddings of G which can be obtained

from f̂ are non-trivial. For example, the graph G1 illustrated in Fig. 1-(1) has a

knotted projection Ĝ1 as in Fig. 2-(1) which always yields at least one Hopf link.

This was pointed out by the third author [7].

(1): G1 (2): G2 (3): G3

(4): G4 (5): G5 (6): G6 (7): G7

Fig. 1. Previously known seven elements of Ω(T ).

(1): Ĝ1 (2): Ĝ4 (3): Ĝ7

Fig. 2. Knotted projections of G1, G4 and G7.

A planar graph is said to be trivializable if it has no knotted projections. For

example, if G is homeomorphic to the disjoint union of 1-spheres then G is trivializ-

able. We remark here that there exist infinitely many trivializable graphs as follows.

The third author showed that every bifocal illustrated in Fig. 3-(1) is trivializable

[7]. In [6], N. Tamura showed that every neobifocal is trivializable. I. Sugiura and
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S. Suzuki showed that any three-line web is trivializable [5], where a three-line web

is a graph obtained from six trees and cycles that contains exactly three edges as

follows. Let T +

1 , T−

1 , T +

2 , T−

2 , T +

3 and T−

3 be disjoint six trees. Let Ci be a cycle

which consists of three vertices vi
1, vi

2 and vi
3 and three edges vi

2v
i
3, vi

3v
i
1 and vi

1v
i
2

for i = 1, . . . , n. We join vi
j and vi+1

j by an edge for i = 1, . . . , n and j = 1, 2,

3. Let u+ and u− be vertices not on these trees and cycles. We join u+ (resp. u−)

and each vertex of T +

i (resp. T−

i ) by an edge for i = 1, 2, 3. Let w+

i (resp. w−

i ) be

a vertex of T +

i (resp. T−

i ) for i = 1, 2, 3. Finally we identify w+

i with v1
i and w−

i

with vn
i for i = 1, 2, 3 and obtain a three-line web as in Fig. 3-(2).

u+

+T

u

i

i

−

−T

(1) (2)

Fig. 3. A bi-focal and a three-line web.

A minor of a graph G is a graph which is obtained from G by a finite sequence

of an edge contraction or taking a subgraph. It is known that the trivializability is

inherited by minors [7, Proposition 1.1]. Let Ω(T ) be the set of non-trivializable

graphs whose all proper minors are trivializable. This is called the obstruction set

for the trivializability and each of elements in Ω(T ) is called a forbidden graph for

the trivializability. Then, according to Robertson-Seymour [2], Ω(T ) is a finite set.

Problem 1.1. Find all forbidden graphs for the trivializability.

In [5], Sugiura and Suzuki showed that the seven graphs listed in Fig. 1 belong

to Ω(T ). They showed that each of G2, G3, . . . , G7 has a knotted projection as

illustrated in Fig. 2 and each minor of these seven graphs is a minor of a three-line

web. In this paper, we exhibit twelve graphs each of which has a knotted projection

and show that nine of them are new forbidden graphs for the trivializability.

Theorem 1.2. Each of the graphs Gi (i = 8, 9, . . . , 16) illustrated in Fig. 4 and

Hi (i = 1, 2, 3) illustrated in Fig. 6-(1.1), (2.1) and (3.1) has a knotted projection.

Moreover, each of the graphs Gi (i = 8, 9, . . . , 16) belongs to Ω(T ).
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(1): G8 (2): G9 (3): G10

(4): G11 (5): G12 (6): G13 (7): G14 (8): G15

(9): G16

Fig. 4. Newly found forbidden graphs G8, . . . , G16.

Then, at this writing, we have sixteen elements of Ω(T ). In Fig. 5 we illustrate

knotted projections of these graphs. It is not hard to observe the following:

Proposition 1.3. Each spatial embedding obtained from the regular projections

illustrated in Fig. 5 and Fig. 6-(1.2), (2.2) and (3,2) contains a Hopf link.

We note that every known knotted projection has this property. Notice that each

of H1, H2 and H3 contains the eye-graph illustrated in Fig. 7 as a minor. Sugiura

asked in his master thesis [4] whether or not this graph is trivializable. As far as

the authors know, it is still open. We observe that a spatial embedding which has

no non-trivial 2-component link can be obtained from every regular projection of

the eye-graph (Proposition 3.1). Then, we ask the following:

Question 1.4. Does any spatial embedding which is obtained from knotted

projections contain a non-trivial link?

A spatial embedding of a graph is said to be free if the fundamental group

of the spatial graph-exterior is a free group. In section 3 we show that a free

spatial embedding can be obtained from any regular projection of an arbitrary graph

(Proposition 3.2). Besides we mention the topics related to regular projections of

minimally knotted spatial embeddings of a planar graph.
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(1): Ĝ8 (2): Ĝ9 (3): Ĝ10

(4): Ĝ11 (5): Ĝ12 (6): Ĝ13

(7): Ĝ14 (8): Ĝ15

(9): Ĝ16

Fig. 5. Knotted projections of G8, . . . , G16.
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(1.1): H1 (1.2): Ĥ1

(2.1): H2 (2.2): Ĥ2

(3.1): H3 (3.2): Ĥ3

Fig. 6. A major Hi of the eye-graph and its knotted projection Ĥi.

Fig. 7. The eye-graph.
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2. Proof of Theorem 1.2

Proof of Proposition 1.3. It is direct to see that Ĝi contains a projection Ĥ

of the (2, 5)-torus knot if i = 8, 9, 10 and the Borromean rings if i = 11, 12, . . . , 16.

For any over/under information of Ĥ, there is an “alternating part” of crossings.

It is sufficient to deal with the three cases as in Fig. 8. In each case, we can find

a Hopf link in the spatial embedding obtained from the projection other than the

specified two double points. This completes the proof.

(1) (2) (3)

(4) (5)

Fig. 8. These projections always yield the Hopf link.

Proof of Theorem 1.2. By Proposition 1.3, we see that Gi (i = 8, 9, . . . , 16)

has a knotted projection. We show that each proper minor of Gi (i = 8, 9, . . . , 16)

is trivializable. Here we recall that for two trivializable graphs G, G′ and vertices v,

v′ of G, G′ respectively, the graph obtained from G and G′ by identifying v = v′ is

trivializable [7, Proposition 3.2 (2)]. Then we see from Fig. 9, 10, . . ., 17 and from

this fact that each proper minor of Gi (i = 8, 9, . . . , 16) is a minor of a three-line

web. This completes the proof.
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Fig. 9. G8 − ei, G8/ei.
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Fig. 11. G10 − ei, G10/ei.
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Fig. 12. G11 − ei, G11/ei.
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Fig. 14. G13 − ei, G13/ei.
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3. Remarks

Given labels of vertices and edges of a graph, we give over/under information

to regular projections in the following manner: (1) For a double point of distinct

edges, the edge with the smaller label is over. (2) For a double point of the same

edges, the one near the vertex with the smaller label is over.

Proposition 3.1. The spatial embedding obtained from any regular projection

of the eye-graph under the over/under informations defined by Fig. 18 contains no

non-trivial links.

Proof. We give the labels of vertices and edges of the eye-graph as illustrated

in Fig. 18. In the eye graph there exist exactly three pairs (γ(1, 4, 5), γ(6, 9, 12)),

(γ(2, 3, 4), γ(7, 9, 11)), (γ(1, 2, 6, 7), γ(8, 10)) of disjoint cycles, where γ denotes the

cycle uniquely determined by the specified labels of edges. It is easy to check

that each of the six cycles appeared in these pairs forms a trivial knot, and each

corresponding 2-component link is split. This completes the proof.

1

6

10

1211

9

3

24

5

8

7

2

31

6

4

5

Fig. 18.

We conclude this paper with the following proposition and related problems.

Proposition 3.2. Let G be a finite graph and f̂ a regular projection of G. Then

there exists a free spatial embedding can be obtained from f̂ .

We note that G does not need to be planar in Proposition 3.2.

Proof of Proposition 3.2. We may assume that G is connected. Let f̂ be a

regular projection of a graph G. Let T be a spanning tree of G. We fix a vertex v0

of G and give over/under information to the regular projection regarding a usual

metric on T to produce a spatial embedding f : G → R
3 = R

2 ×R such that, where

p1 (resp. p2) denotes the projection of R
3 to the first factor (resp. to the second

factor) of R
2×R, f̂ = p1 ◦f and p2 ◦f |T forms a height function coinciding with the

metric on T as Figure 19-(1) which extends to G as a continuous map h : f(G) → R

so that each spatial edge of f(G − T ) has exactly one minimum point.
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(1) (2): f(G)/f(T )

Fig. 19.

Then by contracting spatial edges of f(T ), we obtain a bouquet as in Fig. 19-(2)

which is trivial. Now we see that π1(R
3 − f(G)) is a free group. This completes the

proof of Proposition 3.2.

A spatial embedding of a planar graph G is said to be minimally knotted if

it is non-trivial but f |H is trivial for any proper subgraph H of G. A spatial

embedding f : G → S3 is said to be totally knotted if the natural homomorphism

i∗ : π1(∂E(f(G))) → π1(E(f(G))) is injective, where E(f(G)) denotes the spatial

graph-exterior. The second and the last authors showed the following in [1].

Theorem 3.3. Any minimally knotted spatial embedding of a planar graph is

totally knotted.

We call a regular projection of a planar graph G a minimally knotted projection

if all spatial embeddings of G obtained from it are minimally knotted.

Proposition 3.4. Any planar graph does not have a minimally knotted projec-

tion.

Proof. Suppose that there exists a planar graph G which has a minimally knot-

ted projection f̂ of G. By Proposition 3.2, there exists a spatial embedding f of

G obtained from f̂ such that the fundamental group of the exterior of f(G) is a

free group. On the other hand, by Theorem 3.3 we have that f is totally knotted.

Thus, the fundamental group of the exterior of f(G) is not a free group. This is a

contradiction.

Remark 3.5. We can also prove Proposition 3.4 by using Scharlemann-Thompson’s

result [3] instead of Theorem 3.3.
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Proposition 3.6. Let f̂ be a knotted projection of a planar graph G and f

arbitrary spatial embedding of G obtained from f̂ . Then there exists a subgraph H

of G such that f |H is a non-free spatial embedding.

Proof. By Proposition 3.2, there exists a free spatial embedding f obtained

from f̂ . By Scharlemann-Thompson [3], there exists a subgraph H of G such that

f |H is a non-free spatial embedding since f is not trivial.

Then, it is natural to ask the following.

Question 3.7. Is any regular projection of a minimally knotted spatial embed-

ding of a planar graph not a knotted projection?

It can be easily seen that Question 3.7 is equivalent to the following question.

Question 3.8. Let f̂ be a knotted projection of a planar graph G and f arbi-

trary spatial embedding of G obtained from f̂ . Does there exist a ‘proper’ subgraph

H of G such that f |H is a non-free spatial embedding?
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