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Chap 6. Reaction Rate Theory I

e Definition in phase space (Classical mechanics)

Phase space : (p,q) = (pi,qi), 1 =1,2,---, N (N degrees of freedom)

Dividing surface : f(q) =0  (NN-1 dimension)

Flux through the div surface : F(p,q) = 4é[f(q)] 0f(q) %

oq

Characteristic function :

1 --- trajectory passing (p,q) is reactive
x(p,q) =
0---else

(“reactive” = end up in the product state)
Note : to determine y, complete info of classical trajectories is required

=- we need some approximations (e.g., TST)
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Microcanonical rate k(F)

Constant energy E (=46F—H(p,q)|)

k(E) =

™" [dp [dad|E — H(p,q)|F(p,a)x(p,q)

h=N [dp [,.dqd[E — H(p,q)]

° f R dq = integration over the reactant configuration

e denominator = density of states in reactant = pr(F)

e numerator xh = N(F)

=

: cumulative reaction probability (dimensionless)

k(E)

~ hpr(E)

(Relation with the RRKM theory will be discussed later)
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Canonical rate k(7))

Constant temperature T ( 6 =1/kpT )

K(T) = o= [ dEE(E)pr(E)e ™" (Qr = [dEpr(B)e PE)
(Thermal average of k(F)) (partition function in R )

=| k(T) = Qﬁlh"N/dp/dqe‘ﬁH(me(p, a)x(p,q)

e Note : both k(F) and k£(T) do not depend on the choice of f(p,q)

(as far as f(p, q) is set to make sense...)

e From the Liouville’s theorem (= continuity of the phase space

distribution function), the net flux in a closed surface vanishes.

e Thus, flux across any two dividing surfaces f1(q) = 0 and f2(q) = 0 are the
same by closing them at sufficiently far away from the relevant configuration

space region
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‘ Transition state theory (TST) I

Approximate the characteristic function x(p, q)

(which is supposed to contain complete info of the classical trajectories)

¢ Fundamental assumption of TST

By properly defining the dividing surface f(q) = 0,
trajectories passing through it (toward the product

region) are all “reactive”

(ie, neglect any “recrossings” that are against this assumption)
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We consider a model in which :

o (paq) — (p3757pu7u)

[reaction coordinate s }

and other IN-1 Dim coordinates

e Kinetic terms in Hamiltonian are separable

2

H(ps, s, pu,u) = 2]:; + T (pw) + V(s,u)

e f(s,u)=s (e, dividing surface is s =0 )

TST assumption is : x(ps, S, Pu,1) = 0(ps)  (step function)
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e Microcanonical k5T (E)

Cumulative reaction probability under T'ST

1 Ds
NY(E) P v /dps/dpu/dS/dU5[E—H(p8757pu;u)]5(3)m (ps)
1 > p2 Ps
d S d u d 5E_ 5 _T u _VO,
hN_1/0 pe [ o [ awsle = 2 1) - viow] 2

Decompose the d-function (s part and u part)

5[--) = [ ded[E — p2/2ms — e — V(0,u0)]3[e — T(pu) — V/(0,u) + V(0,ug)]

( up : potential minimum at s =0 )

/ds{/oo dpsfj 5[E—p§/2m8 —E—V(O,UQ)]}
0 S

X {th_l /dpu /du5[6 —T(pu) —V(0,u) + V(O,UO)]}

e 2nd {} = density of states pu(e) for the internal energy of (u, p.)




PG/KA/Chap 6 - 7

In 1st {}, transform the variable ps — e, = p§/2fmS
NH(E) = ffooo de fooo desd[E —es —e — V(0,u0)]pu(e)
— fOOO despu(E —es — V(0,u0))
transform the variable toe = F —es — V(0,up)
noting that pu(e) is defined in € > 0
E—V(0,uq) Number of states between
/ depu(€) [V(O, up) (= barrier top) and F
0

for (u, py) degrees of freedom

N*(E)

FEHE) = hpr(E)

(RRKM theory)
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e Canonical kT51(T)

_ﬁp /Qms

]{TST(T) _ QR hN /dpS/dS/dpu/due BH(ps,s,Pu>
{ — 1/dp /due B(T(pu)+V (0, U))}
h

e Ist {...} = kgT/h (Verify : just a Gaussian integral)

e 2nd {..} = Qle #V(Ou0)
P [ dpu [ due=BT(Pw+V(0.0)=V(0,u0))

u — hN 1
Partition function for (u, p.) at the transition state

(s =0,u=up)
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kTST(T) _ kiT gi o—BV (0,u0)
R

This is the same as the “conventional” TST derived by assuming

1. Existence of the “activation complex” (X*) , and
2. Thermal equilibrium between X* and the reactant R

However, as derived here, these assumptions are not essential for TST

<« The same k™51 (T) is derived “dynamically” just from

e Separability of p?/2m, in Hamiltonian H

e x =0(ps) (TST assumption)

Ds
ms

o F'=4(s) (Dividing surface : s
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‘ Quantum mechanical rate constant I

Preface : Detailed discussion of this subject is quite involved, so we only

summarize the framework/outline of the representative two theories.

1. Flux-operator formalism (W H Miller et al.)

e Flux operator : F(p,q) = 0[f(q)]

A

A

e P : projection operator corresponding to x(p, q) in the classical limit

(For example, projection to reactant states having positive momentum
toward reactive collision in gas-phase reactions)
(see [SR 8.5 - 8.8] for details)
Further assumptions corresponding to the classical TST, e.g.,
p — H(ps), would define “Quantum TST” (but seems not well-established...)
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2. Time correlation function formalism (T Yamamoto)

Based on “linear response theory for internal thermal forces ” (Kubo et al.)

e Npg : projection operator defining the reactant (or product) state

e.g., For [Yr) — |¢p) , Nr = [¢Yr)(¥r|  (with (¢YrltVp) =0)
e Nr = (i/h)[H, Ng]

At B
dt / AN NENr(t + ih\))
0

o At (plateau time)

microscopically long (> decay time of fOB ANNRNRg(t +ih\)) )

macroscopically short such that (ANR(E+ AZi — (ANR(?)) ~ d<2;R>
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Correction from TST '

Especially in condensed phase, “recrossings” may become significant

Writing the exact reaction rate as k = kkT>1 |

k(= k/kT5T) is called “transmission coefficient”

1. Grote-Hynes theory

2. Kramers limit
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e Grote-Hynes theory

Describe the microscopic dynamics near the barrier top (TS) by GLE

2 _
¢ wb,na _

® Wi, = Wi, 1+ ¢(0) 1 equilibrium/adiabatic barrier frequency

cf. harmonic model

H _ps/2 wbnas /2—|—sz/2—|—¢0£€/2)+8261$1
—p5/2 wbms /2+sz/2—|—2w acz—i—czs/w)/Q—c /2cuz2

If the baths {z;} always satisfy z; + c;s/w? = 0 , ie, adiabatically follow

their minima along each value of s , then the “effective” potential for s

would look like —2 (W} ,,q + €7 /wi)s® = —2 (Wi na +€(0))s* = —2wi o8°
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Laplace tr.

~ ~

A%5(N) — As(0) — 5(0) = wi eg8(N) — C(A)(A3(N) — 5(0)) + R(N)

(A4 C(N\)s(0) + 5(0) + R(N)
A2 — W, +AC(N)

50\ =

inverse transformation : s(t) = Z eM5(\)
res{\}

Grote-Hynes equation : A2 — wg,eq + Al M) =0
From its solution A, , the transmission coefficient is given by

)

>\r Wh,eq

Wh,eq a >\r + 5(>\r)

KGH —

For details, see, eg,
Gertner, Wilson, and Hynes, J Chem Phys 90, 3537 (1989), Appendix
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e Kramers limit (GLE — LE)

Langevin eq limit :
5(t) = wg’eqs(t) — (8(7) + R(1) ¢ = [77¢(r)dr = ¢(X
< fast decay limit of ((t) , or coarse-grain the time scale

Then, GH equation : A* + (A —wy =0

A= (—C+ \/CQ +4wy . )/2  (take + since A >0 )

Further, in the strong friction case ( > wpeq = Ap wieq /C

= | K in the Kramers limit : Kkr = wp ¢q/C

. _ t
If we write k15T = g—jje BAG

1 wpwy _ 1 _
< ed ,—BAG x ¢!

= | kxr = kkrk'> =
KR = RKR ¢ o

(originally, this was derived from Fokker-Planck equation)




