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1 Molecular Hamiltonian

Molecules = electrons + nuclei

H=Ty+T.+ Ven + Vee + Vyn

n? o, Z
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I
1 L
Ideally, we wish to solve the whole problem,
HYR,r)=E¥Y(R,r)

But this is too difficult for most of chemically interesting (complex) systems.
= useful to separate the electronic and nuclear problems.

Electronc Hamiltonian

He:H_TN:Te—i—‘/eN'f_‘/ee_’_VNN

2 Adiabatic Approximation (Born-Oppenheimer)

Stage 1 : Fix {R} and solve the electronic problem
Hepn(r;R) = Wi (R)pn(r; R)

on(r;R) - - - electronic wavefunction (parametrically dependent on {R})

W, (R) - - - electronic energy levels at {R}

Stage 2 : Repeat at various {R}

= Potential energy surface W, (R)

Diagram : Potential energy curves W; and Wy (diatomic)
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e Stages 1-2 = “Quantum chemistry” (narrow meaning)

Stage 3 : Examine nuclear dynamics on PES W,,(R)

e quantum energy levels :
HWN) =Ty +W,(R)  (nuclear Hamiltonian on n-th PES)
HT(LN)X'U(R) = Enuxo(R)

0
e quantum dynamics : wavepacket simulations, ih—txn(R) = H™My,(R)

0

OW,(R)
OR

e classical dynamics : moelcular dynamics (MD) simulations, M;R = —

e statistical mechanics : Monte Carlo simulations (quantum or classical)

Stage 4 : Analysis of simulation results (statistical or dynamical)

3 Non-adiabatic couplings®

Expand the total wavefunction in terms of the electronic wavefunction {¢,(r; R)}

V(r, R) = Zn:xn(R)son(r; R) (1)
Schrodinger equation with the total Hamiltonian: H =Ty + H,

[Ty + HJU(r, R) = EU(r. R) (2)

Put into (2), multiply ¢} and integrate over the electronic coordinate (i.e., (¢x|x )

Use Hep,, = Wi, and (pr|en) = Okn,

> {en(rs R)Tnlen(r; R))xn(R) + Wi(R)xk(R) = Exu(R) (3)

n

Noting that Ty = — ¥;(h*/2M/)V? operates to both ¢(r; R) and x(R),

2

> [teulTlen) = X 1 (ol Vil - V| xalB) .
n I 1 4

+Tnxi(R) + Wi(R)xi(R) = Exi(R)
[Here, Ty and V within (¢|---|¢) do not operate to the further right|

Adiabatic approximation: Neglect the 1st line of

[T+ Wil B)e(B) = Bxu(B) (= ih ) )



<« Schrodinger eq for the nuclear win x(R) on a (single adiabatic) PES Wy (R)

neglected terms = Non-adiabatic couplings

= induce mixing/transition among different electronic states k < n

h?
e 1st order NA coupling : M(gpﬂV;]gpr)

2

2M;

e 2nd order NA coupling : (k| V3| 0n)

3.1 Mixed Quantum-classical Simulation

Assume: Nuclear motions follow classical trajectories R(t)

o(r,R,t) ch Yeon(r; R(1))

e (t)|? = probability of finding the system in the n-th electronic state.

How to determine R(¢) ? — not a trivial task
e Most conveniently, classical trajectories on the adiabatic PES W, (R)

e Then, switch among PES’s via non-adiabatic transitions (“surface-hopping”)

Diagram : Curve crossing‘

Put @ into the time-dependent Schrodinger eq : ih%—f =[In+ H.|®

. ocy, 0 )
th(a—ctgon+cngp ch [Ty + Wa(R)]on




Multiply ¢} and integrate over the electronic coordinates (i.e., (©i|x )

Note the orthonormality (pk|p,) = dkn

ac,
zh(%+zh20n<

e Neglect the 2nd order NA couplings (pr|Tn|on)

> = Wi(R)ex + D col@r] Tivlon)

. Use <sok| on(r:R(t >>>:<sok|vR|¢n>-R<t> = dufR)- R0

= thk( ) Wk —1h Z dkn ) ﬂ(t)

(coupled equations for the probability amplitudes {c,(¢)})

4 Electronic part (Quantum chemistry)

4.1 Hartree-Fock Method

Electronic Hamiltonian
He :Te—i_‘/eN_'_‘/ee—i_VNN

ol o AR V=TS

1<J Tij 1<J

LiZy
Ri; (7)

— Z Hcore + ‘/ee + VNN

Vivn is just a constant in the electronic problem (adiabatic approximation), so we hereafter
consider h, = H, — Vnn
Two-electron molecules (e.g., H,)

1
he — HCOTe(l) _"_ HCOT6(2> _"_ _
r12

‘ = LD —:(De1(2)) = Hlorel

(space orbital) x (spin function «, 3)

Diagram : orbital diagrams ¢1é1, @102, &1¢s
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Slater-determinants satisfy the Pauli-Principle of many-clectron systems:
o Anti-symmetry : (2, 1) = —(1,2)
o Exclusion principle : 9(1,2) = 0 if @1 = @, (space and spin)
Energy : E = ((1,2)|he|¢(1,2)) = [ [¥(1,2)"het)(1, 2)dmidT
= ;(<¢1(1)¢1(2)|he|¢1(1)¢1(2)> — (191 1helr1) — (D101 he|P161) + (D161 |e|Pr11))

e The Ist term = (¢ (1)1 (2)|He(1) + H¢(2) + é’¢1<1>§51<2)>

= (o1 (W H(1)]¢1(1))(61(2)191(2)) + (S1(1)]61.(1)) {01 (2) H"(2)|61(2)) + (b161] ;1 d161)

= 2H1CfTE —+ Jll
e The 4th term gives the same result : 2H{{"* + Jy1

o The 2nd term = (G| H[d1)(d1|d1) + (¢1]¢1) (01| H|pn) + (p10n1] 1 |0161)
=0  because («|3) =0

e The 3rd term is also zero.

Thus, B = 2H&™ + J,
Let us next consider an open-shell singlet configuration |¢1¢s| (a electron in ¢, and 3 in ¢s)
In the similar way, we get

B = H{7™ + HE™ + J

where Jig = (91| | d102) = (12][12) = Joy = (d2n | |da1) = (21]]21)

T12 T12

Triplet configuration |¢p1¢s| (v electrons in both ¢; and ¢9) gives

E=H"+ Hy% 4+ Jig — Ko

where K12 = <12||21> = K21

Jij and K;; are called Coulomb and Exchange integrals, respectively.

These examples suggest the following rule to write down energies of electron configura-

tions

e Each electron in orbital ¢; contributes H; "¢
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e Bach electron pair in orbitals ¢; and ¢; contributes J;; (regardless of the spin)

e Fach electron pair of the same spin in orbitals ¢; and ¢; contributes —Kj;

Exercise : Write down the energy expression for the following electron configurations.
1. « and (3 electron pair in ¢; and an « electron in ¢, (open-shell doublet)
2. paired (« and f3) electrons in both ¢; and ¢y (closed-shell)
Answer :

1. E=2Hg® + H™ + Jig + 2J19 — Ky

2. B = 2H® 4+ 2HS™ + Jiy + Jog + 415 — 2K15

In general, for closed-shell N-electron systems,

N/2 N/2 N/2 N/2
E = Z Hfimqe + Z Jm + Z Z (4(]Zj - 2Kz’j)
i=1 i=1 i=1 j=i+1
This can be simplified by noting J; = Kj;
N/2 N/2 N/2
E=Y Hi+> Y (2J;; — Ky)
i=1 i=1 j=1

Hartree-Fock Method

= find variationally best MOs {¢;} under the orthonormality condition (¢;|¢;) = d;;

= minimize L = E + Y, 37, €;;(0;5 — (¢i|#;)) w.r.t. the variation of MOs ¢; — ¢; + ¢;
(where ¢;; is the Lagrange multiplier)

= Hartree-Fock equation : F,gzﬁ, = > €ijPj

N/2
where the Fock-operator is defined as F; = H*"*+ > (2J;— K;)  [for closed-shell systems]
j=1

The Coulomb and Exchange operators jj and K ; are defined by

JWei(1) = (65(2) 17416526 (1)

Ki()@i(1) = (65(2) |71 16:(2))6;(1)
Comment : The bottleneck for the first-learner would be the abstractness of the functional
variation of MOs ¢; — ¢; + d¢;. In practical calculations, however, we employ LCAO-MO

expansion of the MOs ¢; = ch-xy where x is the atomic orbitals (AO), and optimize
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the coefficients ¢,;. This reduces the problem to a (non-linear) matrix eigenvalue problem
which is much more handy for computer implementations. (Hartree-Fock-Roothaan-Hall

method)
Summary of Hartree-Fock method
e Assumes a single Slater-determinant for the electronic wavefunction, which

satisfies the Pauli Principle of many-electron systems

e and variationally optimizes the MOs by minimizing the exact energy ex-
pression for the Slater-determinant wavefunction under the orthonormality

condition of the MOs.
e The electronic energy is expressed by one-electron integrals H*"* and Coulomb

and Exchange two-electron integrals J;; and ;.

4.2 Electron Correlation Problem
4.2.1 Static and Dynamic Correlations

4.2.2 Various Methods

e CI, MPn, MCSCF, MRCI, CC, MRMP, etc.

4.3 Density Functional Theory
4.3.1 Kohn-Sham theory
4.3.2 Hybrid Hartree-Fock / DFT

4.4 Other Methods

e Valence-Bond Method

— non-orthogonal orbitals

— chemically intuitive resonance structures
e Semi-empirical MO Methods

— Approximations: neglect of differential overlaps, empirical parameters

— CNDO, INDO, MINDO, PM3, AM1, etc. etc.



5 Potential Energy Surfaces

Functional fitting

e Choice of the functional form (physically adequate asymptotic behavior, symmetry

etc.)
e Empirical parametrization using e.g. spectroscopic data
e Ab initio parametrization using quantum chemical calculations

e Dimensionality problem : when the system has f degrees of freedom (f = 3N — 6
for non-linear N-atoms molecules), and if M data points are needed per degree of
freedom for the functional fitting, the total number of data points required, M7, may
be prohibitively huge for realistic systems. (e.g., M ~ 10 and N = 6 requires 10'2

points.)

On-the-fly evaluation of the potential W,,(R) and gradient OW,,/OR

e Ab initio MD, Car-Parrinello MD

e Still computationally expensive, but becoming feasible along with the increase of the

computer power

5.1 Empirical Force-Field

Standard FF for MD simulations of biomolecules

W= 3 Kr(R—R)*+ > K0 —0)"+ > Vall+cos(ng—7)

bonds angles torsions
12 6
atoms(i<j) Tij atoms(i<j) i Tig
e First three terms = bonding potential
e Last two terms = non-bonding interaction (Electrostatic + Short-range repulsion)
e Inadequate for bond-breaking and -forming processes
e Lack of electronic polarization effects, charge-transfer interaction
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5.2 Hybrid Methods*
5.2.0 Classical Mechanics

O yymeael Rp))

M[R](f) — aRI

5.2.1 TDSCF MD

e On-the-fly evaluation of the local potential W(R) = (Uy(r; R)|H.(r; R)|¥o(r; R))e.

e Time-dependent propagation of the (ground state) electronic wavefunction ¥ (r; R).

. 0
M;R;(t) = Vol H, ¥
I 1() 6R1< 0| | 0>
oY,
— = HVU
Zhat e*0

Simple model of Wy is often employed (rather than carrying out quant. chem. calculations),

e.g., basis function expansion Wo(t) = > ¢;(t)F(r; R)

%

5.2.2 Born-Oppenheimer MD

. P
M]R[(t) == 8R mln{(\IfO|H |\I/0>}
EywWy, = H.\Y,
Optimize the electronic wavefunction ¥, at each nuclear configuration R (rather than prop-

agating it as in TDSCF MD).
5.2.3 Hartree-Fock BO MD

If we employ the Hartree-Fock wavefunction : WHF = det{;}
where 1); = HF orbitals (1-electron, orthonormal),
min{(Vo|He|Wo)} = min{(¥5"|He[¥5")}
Yo til (Wilt3)=5i;
i.e., minimization within the {¢;}-space under the constraint <¢z’|%>
HF Lagrangian : L = (U7 [H JUFT) — > e ((0ili;) — 655)
€;; = Lagrange multipliers
Variational (stationary) condition :

our o

=0 = Fuy= > €;;  (HF equation)
J
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A N
e Fock-operator : F; = H*" + Y (2J; — K;)  [for closed-shell systems]

Jj=1

e canonical (diagonal) form : Eab; = e (e; = orbital energy)
e may also use Kohn-Sham (DFT) FXS and KS orbitals

HF BO MD :
_9
OR;

0 = —Fayi+ Y e
J

M Ry(t) = (Uo" | He|Pg") (Ug" = det{v:})

This set of equations can be derived from an Extended Lagrangian :

1 .
Lpo = Z §MIR? - <\I’%J{F|He|\1’(l){F> + Z Ez‘j(<¢z‘|1/}j> — 0ij)
1 i,j
by assuming that the Euler-Lagrange equation of the classical mechanics applies for both

the nuclear and electronic (orbital) degrees of freedom

d 0Lgo 0Lpo
dt aq aq 0 or gq R17 w’u %

= BEuler-Lagrange eq :
(Note : functional derivatives for ¢; and ;)

5.2.4 Car-Parrinello MD

Introduce : fictious mass and kinetic energy for electronic (orbital) degrees of freedom

= Extended Lagrangian :
1 : 1 .
Lop = Z §M1R§ + Z §Hi‘wi|2 — (U | H | U™ + constraints
i i

e.g., constraints = MO orthonormality = > €;((¢;|¢;) — d;5)

1,

MR;(t) = —i<\IJHF|H Wy + i{Constraints}

e OR; " 0 TR,
Euler-Lagrange eq = 5
pabi(t) = o (WP | H | W) + e {constraints}
Car-Parrinello HF MD
. P
MiR(t) = —TRI@I’(I){F\HJ‘PEF> (T = det{ys})

,uﬂ/%(t) = —szz + Z €iV;
J
( may also use Kohn-Sham Fock operator F55")
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Electronic (orbital) degrees of freedom (El-DoF) are treated as dynamical variables

No (strict) minimization in the MO {; }-space

Deviate from BO-MD due to thermal fluctuations of the El-DoF

The dynamics of the EI-DoF must be kept cool (eg using constraints)

’Diagram : CP-MD trajectory in the coordinate and orbital space

6 Molecular Dynamics Simulation

6.1 Summary of Classical Mechanics

e Newtonian EOM

e Principle of Least Action

to
Action : [ E/ L(z,z)dt

t1

The classical trajectory z(t;) — z(t2) minimizes the action I against small variation

dz(t) (with fixed ends dz(ty) = dz(tz) = 0).

to 1)
51 — / dtsc = [ dt <M5x+ M&i)
t1 t1

ox ox
t2 (0L d (0L oL |?
= [ a!lZ= (== =
" {83: dt<8$>}5$+8i5xtl

13



Stationary condition 6/ = 0 for arbitrary dz(t)

= Euler-Lagrange eq : gﬁ — ;; (?) =0
x fs

This is easily seen to give the Newtonian EOM for L =T -V = %x'Q —Vi(x)

e Hamiltonian EOM : Momentum and Hamiltonian are defined by

For Cartesian coordinates, we get p = mz and H = p*/2m + V(z), and it is easy to

see that the following Hamiltonian EOM is equivalent to Newtonian EOM:

. 0OH . o0H
T=—-— and p=———

op ox
Lagrange and Hamilton theories are more flexible and convenient when dealing with

general coordinate systems other than the Cartesian.

6.2 Integration
6.2.1 Verlet algorithm

r(t+0t) =r(t)+ £(t)ot + 25()ot* + - - -
=r(t) + v(t)ot + sa(t)ot® + - - -
r(t—0t) =
= r(t+dt) =2r(t) —r(t — ot) + a(t)ot?
e error is of order O(4t)
e time-reversible
e requires storage of the previous position r(¢ + §t)
e small term a(#)dt? is added to a difference of large terms 2r(t) — r(t — 6t)
= numerical round-off imprecisions

e velocities are unnecessary to evolve the trajectory, but needed when calculating the

kinetic energy
r(t+dt) —r(t — ot
v(t) ( )2(525 ( )

— error is of order O(5t3)

— small difference is divided by the small timestep = numerical imprecisions

14



6.2.2 Leap-frog algorithm

Propagate position and velocity
r(t+0t) =r(t) + v(t + 2)ot

v(t+5) =v(t—5) +a(t)ot

T ] W 00
) el e e -

e mathematically equivalent to Verlet method (easily verified by eliminating the veloci-

ties)

e velocities (& kinetic energy) at time ¢

v(it+3) +v(t—%)
2

v(t) =

e advantages over the original Verlet

— less problematic on the numerical round-off due to taking differences

— explicit appearance of velocities

— criticisms : treatment of velocities — still not very satisfactory
6.2.3 Velocity-Verlet algorithm
r(t + 0t) = r(t) + v(t)dt + 3a(t)dt?
v(t+2)=v(t)+a(t)

v(t+6t)=v(t+2L)+alt+6)s

e mathematically equivalent to the previous two

15



6.3 Treatment of Molecules

e Time scales :

bond stretch < bend < torsion < collective motions < rotation < translation
e Fixing bond lengths (to save CPU)

1. treat as a rigid body (small molecules such as HO)

2. transform the EOM to internal coordinates (e.g., GF-matrix method)

3. introduce bond constraint condition to the Lagrangian

= constrained EOM (SHAKE and RATTLE methods)

e Multiple time step method(s)

— small time step for fast motions

— frequent update of short-range interactions
6.3.1 Multiple time step method (r-RESPA)*

r-RESPA = reversible REference System Propagator Algorithm

Classical Liouville operator :

0 0H 0
L={. H
L=t = Z lapz dg g, api]

0A0B 0A 83]

0q; dp; ~ Op; Og;
Propagation of the phase-space point I" = {¢;(¢ ), pi(t)}

Poisson bracket : {4, B} = Z [

D(t + At) = eF2 T(t)

2

ov
In Cartesian coordinate with H = Z 2p 4

(x), pi =mv;, <E = _&UZ- = force)

m; Ov;

0 FZ-O]

Using eca%f(y) = f(y + ¢), we find :

o VAU propagates x to x + vAt

o Almdy propagates v to v + FAt

16



Trotter decomposition
e’i(L1+L2)At — eiLlAt/QeiLgAtei[th/Q + O(At3)

If we choose :  iL; = %%, 1Ly = v%

‘P

T(t+At) =e2

g
S

- T(t) + O(AF)

3
Flo
D
e
]

From right to left :

At
2

w‘[>

tF
m

e ¢ e propagates v to v + %

A propagates T to x + vAt

>

tF
m

N

@ propagates v to v + %& (with updated force F(x) )

[ B

This is exactly the Velocity-Verlet algorithm

Decomposition of forces :  (fast/slow, tight/soft, short/long-range etc.)

F= Ffast + Fslow

Accordingly, iL; = Ll L, =90  Fax 0

Then, the propagator will be

At Fglow 8

At Fylow

ez m %eAt( 2ot 2

Uax m 31))62 m  Ov

We further decompose the propagator in the middle into n micro-steps with 6t = At/n

n &Fslow@

At Folow 0 5t Frast 0 Stu o 5t Frast

9
e 2 m OJv [@2 m Jve %e?m% e 2 m  Ov

Implementation It might be easier to see the code :

it = At/n I micro-timestep (for fast motions)
do istep = 1, nstep I overall simulation steps
v =v+ (At/2) - (Faow/m)
doj=1,n ! inner loop for fast motions
v =v+ (0t/2) - (Fast/m)
X=x+0t-Vv

call calculate_force(Fi.s)
v =v+(6t/2) - (Fgast/m)
end do
call calculate_force(Fygjoy)
v =v+ (At/2) - (Faow/m)
end do

17



6.4 Constant Temperature and Pressure Methods

6.4.1 Common Statistical Ensembles

e constant NVE (microcanonical)
e constant NVT (canonical)
e constant NPT (isothermal-isobaric)

e constant yVT (grand canonical) [t = chemical potential]

Straightforward / standard use of :

e MD = microcanonical  (energy conservation of classical mech.)

e MC = canonical (Metropolis algorithm)

Statistical average (constant temperature)

(Alg,p)) = 22 / / dp dg A(q, p) e~ H@w)/kaT

where @ is the partition function : Q = [ [ dp dg e~ H(@P)/ksT

6.4.2 Temperature and Pressure from MD

Equipartition theorem :

2
pai . kBT o

i.e. average kinetic energy of kgT'/2 for each degree of freedom

The kinetic temperature is thus computed in the classical MD by

1 p?
T — Pi

Pressure from MD : PV = NkgT + (W)

oV

N
;- fint fint —
R

Virial : W =

Wl

18



6.4.3 Constant NVT MD*

Extended system method (Nosé-Hoover)

Couple with external heat bath = friction parameter n (fictious mass Q)

. | 87 . Py
r,=—, pi= Li——pi
me p Qp
N _2
. pn . pz‘
n=-=, Pp= — — N¢kpgT
Q" ;mi !

(N¢ = number of (unconstrained) degrees of freedom = 3N — N.)

e proven to generate canonical ensemble

e Conserved quantity (for coding checks) :

2

2
pi p
E = § o, +Vi(r)+ % + N¢kgpTn

6.4.4 Constant Pressure MD*

Constant pressure P in simulation < Volume control (as a dynamical variable)

= coordinate scaling : r; = V/3s;
extended Lagrangian : (@) = fictious mass for V)

1 1 .
L= 5vaf —V(r)+ 5QVQ — PV

Euler-Lagrange eq : %% — ‘Z—s =0 for gq=s;, V
. 1 f 2 . - 1
isizvl/SE_WSV7 V—@(P—P)
1
P=_=

% (zz: mivi + W) (W = virial)

7 Data Analysis
7.1 Static Properties

Ergodic hypothesis :  Statistical ensemble average = average over long time

(4) = /TmnA(t)dt— ! foA
B 0 N F

Trun run p—1

where Trun = Nt (Neun steps, Ay = A(kEAL))

e RMS deviation = /(§A?) (A= A-(A))

19



" dw W waﬁ VanN/\w jg)

T Distribution F{A)

Practical
Method 1: save the whole sequence of A(t) = analyse after simulation

Method 2: ”on-the-fly” summing up.
For RMS, we sum up 64 = A — (A). However, we don’t know (A) until the end of

simulation. The following conversion is then useful:

(0A%) = (A= (A))?) = -~ = (4%) — (4)°

sum = 0 ; sum2 = 0

do istep = 1, nstep I overall simulation steps
call calculate_quantities(A)
sum = sum + A

sum?2 = sum?2 + A2

end do
average = sum/nstep

variance = sum2/nstep - average?

RMS = +/variance
7.2 Radial disribution function

Example : Ion pair in water

20
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7.3 Time correlation function

" AW W WA“ Vﬂvm >

t Distribution F{4)

correlation between points with time interval 7

1

trun -7

Caa(7) = (SA(0)5A(7)) = / " SA®E) SA(t + 1) dt

[ ] CAA(O) =1
e For random motions (e.g. in liquids)

Can(t) = 0ast — +oo (loss of correlation)

e For "regular” motions (eg. harmonic oscillators / phonons in ”perfect” solids)
(z(0)z(t)) = 2(0)* cos wt
e For (slightly) disordered set of oscillators = “dephasing”

T(t) = Z cixi(t) = Z ¢;x;(0) cos wt

Slightly disamarad vibratians Average ([dephased)
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Example : Dielectric response of water
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7.3.1 Relaxation Phenomena
Onsager’s Regression Hypothesis
A(t) — (A) _ (0A(t)3A(0))
A00) — (4) (54%) 7O
non-equil. response equil. correlation
NS
decay of (experimentally) decay of spontaneous
prepared non-equil. state fluctuation in equil. @ A

Microscopically proven by Fluctuation-dissipation theorem in the Linear-Response limit
7.3.2 Various Applications

e Transport properties (Diffusion constant) < velocity TCF

e Microwave & IR spectra < dipole TCF

Electronic spectra < transition dipole TCF

Electron / excitation transfer rates <= TCF of energy gap (Fermi Golden Rule)

Chemical reaction rates <« flux-flux TCF

cf. G C Schatz & M A Ratner, ”Quantum Mechanics in Chemistry” (Prentice Hall, 1993)

Diffusion constant = mean-squares displacement (Einstein relation)

([r(t) —r(0)]*) = 6Dt

292



Relation to velocity TCF :

r(t) —r(0) = /OtV(T)dT = 6Dt = /Ot dm /Ot dro(v(1)v(T2))

% both sides
6D—2/dT —2/d7' v(t — 7))
< TCF depends only on time interval (in stationary equilibrium)

Changing the integration variable from 7 to 7/ =t — 7,

=2 [[artvo))
8 Monte Carlo Simulation

Monte Carlo integration < random sampling

1 Nsample

r= [ = > S

Nsample i=1

{z;} = uniform random numbers in [0, 1]

Statistical average (constant temperature) <= Phase-space integration

(Alg,p)) Q //dp dq A(q, p) e Hlap)/ksT

where @ is the partition function : Q = [ [ dp dg e~ H(@P)/ksT
For momentum-independent quantities A(q) (with H = 3=, p?/2m; + V(q))

= Configuration space integration

(@)/kT
=7 / daAla

where Z = /dqe 9)/ksT
8.1 Standard MC (Metropolis algorithm)

Metropolis MC

e generates configurations R in canonical ensemble

e Core algorithm :
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do istep = 1, nstep

Rycw = Rowg + R
call calculate_potential(V (Ryew))
AV =V (Rpew) — V(Row)

if (AV < 0) then
accept Rew

I overall Monte Carlo steps

! trial move

I Metropolis test
' R, 1s more stable

else if ( e~ AV/EsT > random number ) then I R,cw is less stable but thermall acceptable
accept Ryew
else
reject Reo I stay at Roq
end if
end do
e Statistical average is calculated by:
1 Nstep
A) = AR,
(A) Nowg 2= (Ri)

MC vs MD

ergodic hypothesis)
no need to evaluate forces

no time evolution

8.2 Umbrella Sampling Technique

Finite length of MC sampling

direct generation of canonical ensemble (straightforward MD = microcanonical)

Phase-space / configration-space average (MD analysis = time average assuming the

= the system may be trapped in local potential minima.

In order to extend the sampling to high potential (unstable) configurations, we augment a

bias (weight / window / umbrella) potential W (q) to the original (unbiased) potential V'(g).

The statistical average obtained from this biased simulation is

(A(Q))w = Ql/dq A(q) e BV (9)+W(q)) (Qw — /dq e—ﬁ(U(Q)-i—W(q)))
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The statistics of the original (unbiased) system are reproduced by

] v 5 Qu
(Ao = o [ da Ag) 0 x £

9 Free Energy Surfaces

Remember that the Gibbs free energy is related to the equilibrium constant and thus the

probability distributions of the reactant and product species. For example, for A = B,

—AG/ksT _ o _ [B] _ Prob. B
‘ K [A]  Prob. A

This would suggest the following generalization to more general “states” of the system

Prob. State 2
AG = 6o = G: = kst oy

Now, let X be some coordinate(s) of the system. This may be a position coordinate itself
or a function of positions. The free energy curves or surfaces along X can be defined and

calculated from the probability distribution of P(X)

G(X) = —kgTInP(X) or G(X3)—G(X))=—kpTIn (P(X2)>
For example, when P(X) is a Gaussian distribution
P(X) o e=X
then the free energy curve G(X) is a harmonic potential
G(X) = —kpTlne ™ 4 C = kgTaX?+C

where C'is just a constant coming from the normalization factor of P(X). It is very straight-
forward to calculated P(X) from simulations. The umbrella sampling method discussed in

the previous section can be employed for high energy (less probable) regions along X.
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