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Readings

1. Atkins, The Elements of Physical Chemistry, Oxford, Chap 12-18.
Basic. Essential for chemistry undergraduates.

2. Atkins and Friedman, Molecular Quantum Mechanics, Oxford. (£35)
Advanced. Includes modern topics. Good reference for both postgraduates and
researchers.

3. Pauling and Wilson, Introduction to Quantum Mechanics: With Applications to
Chemistry, Dover. (£7)
Advanced classic. Maths derivations are more detailed than Atkins-Friedman.

4. Coulson, Valence, Oxford, Chap 3.
Classic. Chapter 3 is a compact summary of quantum mechanics for chemists.
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1 Quantum Effects in Chemistry

Quantum effects are typically observed in chemical problems such as

• discrete energy levels (electronic states, vibration, rotation)

• zero-point motion (molecular vibrations, phonons in solids)

• tunneling (electrons, light atoms such as H, He)

• resonance and interference

Note that these phenomena cannot be understood in terms of Classical Mechanics
which can nonetheless describe the motion of macroscopic objects very well. In this
introductory section, we survey the qualitative aspects of these quantum phenomena.

1.1 Discrete energy levels

1.1.1 Coulomb potential

In the hydrogen-like (i.e., one-electron) atoms, the electron is subject to the Coulomb
potential from the nucleus:

V (r) = − 1

4πε0

Ze2

r
(1.1)

where Ze is the nuclear charge and r is the distance between the electron and the
nucleus. The electronic energy levels are given by

En = − µe4

32π2ε20h̄
2

Z2

n2
= −hcRHZ

2

n2
∝ − 1

n2
(1.2)

where RH = Rydberg constant, µ = reduced mass ' me.

• Note that the energy spacing ∆E decreases as we go up the energy levels (or the
quantum number n).
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1.1.2 Box potential

V (x) =

{
0 (0 < x < L)
+∞ (x ≤ 0, x ≥ L)

(1.3)

ψn(x) =

√
2

L
sin

(nπx
L

)
(1.4)

En =
n2h2

8mL2
∝ n2 (1.5)

• ∆E increases as the energy (or n) goes
up.

Question: Delete as appropriate.

1. ∆E increases/decreases as the mass of the particle m increases.

2. ∆E increases/decreases as the size of the box L increases.

• The quantum effect is large for light particles (e.g. e−, H, He) confined in a small
region.

1.1.3 Harmonic oscillator

V (x) =
1

2
kx2 (k = force constant) (1.6)

En = (n+
1

2
)h̄ω, ω =

√
k

m
(frequency) (1.7)

∆En = En+1 − En = h̄ω (independent of n)
(1.8)
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Questions

1. How would you interpret qualitatively the different behavior of ∆E among the
three (Coulomb, Box, Harmonic) potentials?

2. Draw schematically a potential energy curve for a diatomic molecule and the
vibrational energy levels. How would you interpret the behavior of ∆E?

3. Add a schematic drawing of an excited electronic state potential curve. How
would you interpret the fact that the electronic excitation energies are generally
much larger than the vibrational excitation energies?

4. Do you think that we can detect quantized energy levels of the translational
motions of molecules? Why / In what condition?

5. In an ideal situation where the translational motion of a quantum particle is
‘free’, i.e., no confinement by a potential, it can take any energy. In other words,
it has a continuous energy level. Now, why do you think is the ‘free’ rotation of a
molecule quantized, i.e., has discrete energy levels? What is the difference from
the free translation?

1.2 Zero-point motion

Question: Describe and compare in classical and quantum mechanics the lowest
energy state of a particle in a bound potential. Does the particle have kinetic energy?
How does the probability of finding the particle depend on the position?

1.3 Tunneling

Quantum tunneling : classically forbidden transmission through a potential barrier. In
chemistry,

• Long-distance electron transfer (redox) reactions

• Proton / hydrogen / hydride transfers and migrations

• Excitation energy transfers (photochemistry)

• Electronic devices (tunneling diode etc.)

• Super-fluid state of liquid He / chemistry in liquid He

•
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1.4 Resonance and interference

Even when the energy of a quantum mechanical particle is above the potential maxi-
mum, there is a finite probability of reflection. In this case, the transmission probability
oscillates as a function of energy. This is called “anti-tunneling” or “non-classical reflec-
tion”. These phenomena comes from the resonance behavior of the wavefunction. In
chemistry, this is observed in e.g. gas-phase molecular beam scattering experiments. It
is also considered that the resonance of electron motion is relevant in the long-distance
electron transfer (redox) reactions in biomolecules.

2 Schrödinger Equation

In classical mechanics, the dynamics of a particle is completely specified by its trajec-
tory, i.e., the evolution of the position x(t) and momentum p(t) along time t. Given
the starting position and momentum at a certain time, the trajectory in the future is
predicted by Newton’s equation. In principle, we are able to observe the (classical)
trajectory by detecting the reflected light from the particle.

The situation is radically different for quantum mechanical particles such as atoms
and electrons. Precise determination of their trajectories is much less plausible since,
firstly, we don’t have the resolution shorter than the wavelength of the probe light. The
wavelength of visible light is in the range of 400-700 nm, which is far longer than the
dimension of atoms. If we use a shorter wavelength to obtain higher resolution, then
the photon energy becomes larger and the tiny quantum particle are easily scattered
off by the probe photon. This imposes a fundamental difficulty on the simultaneous
observation of the position and momentum of quantum particles. ∗

∗To measure the momentum of a quantum particle, e.g. an electron, we observe the Compton
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This imprecision in the simultaneous determination of position and momentum is
postulated to be a fundamental law of quantum physics, which is called “Heisenberg’s
uncertainty principle”. It also implies that the quantum mechanical equation of motion
will not have a form to predict in a direct way the particle trajectory (x(t), p(t)) itself.

It turned out during the first 30 years of the last century that we need to intro-
duce an auxiliary substance called wave function, which is assumed to represent the
quantum mechanical state of the system. Instead of getting directly to the trajectory,
we have to look at the wave function in order to find the possible set of numbers
that may result from the measurements of x(t) and p(t), and various other physical
quantities.

Then, what actually is this mysterious auxiliary quantity? Is it something real,
or just a mathematical accessory in order to help our calculations of the physical
quantities? When we start asking these kind of questions, we might fall into the
‘philosophical’ problems such as ‘what do we mean by a real substance, or the reality
per se?’ etc. Indeed, there are lots of issues to discuss around the conceptual foundation
of quantum mechanics, on which we still do not seem to have achieved completely
agreed understanding. These are considered to be important for clarifying the problem
of reconciling the classical mechanical world of our ordinary life and the quantum
mechanical world of the microscopic constituents. And furthermore, this problem may
be related to a purely technical issue of simulating chemical reactions, where the heavy
nuclei might be treated by classical mechanics and the electrons by quantum mechanics.
In this lecture course, however, we do not venture to dive into these kind of problems
but rather try to see (and get accustomed to) how it actually works in some well-
established chemical problems.

2.1 Time-dependent Schrödinger equation

The wave function Ψ(x, t) evolves along time according to

ih̄
∂Ψ(x, t)

∂t
= ĤΨ(x, t) (2.1)

For a particle (mass m) in a potential, the Hamiltonian is given by

Ĥ = − h̄2

2m
∇2 + V (x) (2.2)

recoil of the photon scattering, which is subject to uncertainties limited by the directional resolution
of the microscope.
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where ∇ is an operator to give the gradient vector of a scalar function, i.e., ∇f =
(∂f

∂x
, ∂f

∂y
, ∂f

∂z
). Its square ∇2, called Laplacian operator, is defined by

∇2Ψ(x) =
∂2Ψ

∂x2
+
∂2Ψ

∂y2
+
∂2Ψ

∂z2
(2.3)

The first term in Ĥ represents the kinetic energy of the particle p2/2m, after apply-
ing the quantum correspondence of the momentum p = −ih̄∇. The second derivative
∇2Ψ represents the curvature of the wave function, so the oscillatory behavior in space
(or the ‘wave number’ as will be discussed later) determines the kinetic energy of the
particle.

2.2 Stationary state

We assume here that the solution of the time-independent Schrödinger equation

Ĥψ(x) = Eψ(x) (2.4)

is known. Then, what does this mean for the time evolution of the system according
to the time-dependent Schroödinger equation (2.1)?

When we have the solution of Eq (2.4), the time-dependent wave function Ψ(x, t)
is factorized into a product of time and space parts such as Ψ(x, t) = f(t)ψ(x), so that
Eq (2.1) simplifies as

ih̄
df

dt
ψ(x) = f(t)Ĥψ(x) = f(t)Eψ(x) (2.5)

Therefore, the time-dependent part f(t) satisfies a simple 1st-order differential equation

ih̄
df

dt
= Ef(t) (2.6)

whose solution is

f(t) = C e−iEt/h̄ = C[cos(Et/h̄)− i sin(Et/h̄)] (2.7)

The arbitrary constant C is not important for the current discussion (it is determined
from the normalization of the wave function), so we simply put C = 1. The time-
dependent wave function is then expressed as

Ψ(x, t) = ψ(x) e−iEt/h̄ (2.8)

This means that Ψ(x, t) is a standing wave oscillating at frequency E/h̄.
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Notes:

1. In many textbooks, the time-independent equation (2.4) is derived from the
time-dependent Schrödinter equation (2.1) via separation of variables. On the
other hand, we have taken here an easier route by assuming that the total wave
function can be factorized into the time and space part. It would be useful to
read and compare these different treatments.

2. We need some additional care when the Hamiltonian explicitly depends on time.
This will be treated in Sec 8 dealing with the time-dependent perturbation theory
with applications to molecular spectroscopy.

3 Simple systems

In this chapter, we discuss a few of the simplest systems; a free particle, a particle
in a box, and a particle in a rectangular potential well or colliding to a rectangular
potential wall. The wave packet picture, which reconciles the mysterious duality of
quantum particles, i.e., the wave and particle duality, is also introduced. All these are
aimed to develop good qualitative pictures of quantum systems which may carry
over to other problems.

3.1 1-dimensional free particle

Free particle ... V (x) = 0,

Ĥ = − h̄2

2m

d2

dx2
(3.1)

The time-independent Schrödinger equation

− h̄2

2m

d2ψ(x)

dx2
= E ψ(x) (3.2)

whose general solution has a form

ψ(x) = A eikx +B e−ikx (3.3)

where A and B are at this stage arbitrary constants. They represent the amplitude of
the wave function. k is called wave number, the number of waves per unit length
(×2π), i.e., k = 2π/λ where λ is the wave length.
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Question :

1. Confirm that Eq (3.3) satisfies Eq (3.2), and express the energy E in terms of k
and other physical parameters.

2. Does the energy E exhibit discrete levels or a continuum? In other words, is
there any condition that limits the value of k in order for ψ(x) to satisfy Eq
(3.2)? (This is to be compared with Question 2 of Sec 3.3.) What is its physical
implication? Is there any connection to Sec 1.1?

From Sec 2.2, the time-dependent wave function is expressed as

ψ(x)e−iEt/h̄ = A ei(kx−Et/h̄) +B e−i(kx+Et/h̄)

= A eik(x− h̄k
2m

t) +B e−ik(x+ h̄k
2m

t)

≡ A ψk(x, t) +B ψ−k(x, t)

(3.4)

The last line defines ψk(x, t). We find from the exponents x± h̄k
2m
t that the first/second

term represents a traveling wave propagating toward the positive/negative direction of
x. with a velocity h̄k

2m
. †

Question : Show that ψk(x, t) is an eigenfunction of the momentum operator p̂ =
−ih̄ d

dx
.

3.2 Wave packet

The wave function derived above, although being mathematically correct solution for
the free particle Hamiltonian, is not physically adequate because it is delocalized over
the whole range of space −∞ < x < +∞, and therefore the normalization integral
diverges. ∫ +∞

−∞
|ψk(x, t)|2dx =

∫ +∞

−∞
1dx = ∞ (3.5)

†This velocity h̄k/2m is the so-called phase velocity of the wave. On the other hand, as seen
from the Question, ψk(x, t) has a definite momentum of h̄k, which implies that the velocity is v =
p/m = h̄k/m, being different from the phase velocity by a factor of 2. This ostensible paradox is
resolved by considering a wave packet as in the next section and in Appendix A. To summarize, we
find that it is the group velocity of the wave packet, i.e., the velocity of the embracing envelope
of the packet, that corresponds to h̄k/m, in accordance with the classical mechanical velocity derived
from E = mv2/2 = h̄2k2/2m. On the other hand, the phase velocity describes the motion of the
ripples within the wave packet, which may be different from the group velocity of the envelope.
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(In fact, this is related to the uncertainty principle. As we have seen in the Question
above, the wave function ψk(x, t) has a definite momentum p = h̄k, which means that
its position is completely uncertain.)

Disordered oscillators Average (dephased)

To remedy this divergence, we consider a superposition of ψk’s having a range
of k’s, which will localize the wave function via “dephasing”. Namely, by mixing
waves of slightly different wave length, we observe the cancellation, or the destructive
interference, of the waves as we get away from the center (see the figure). Indeed, this
recovers the particle picture of the free-‘particle’.

This superposition can be described by using some appropriate weight factors, wki
,

for the i-th component of the wave number ki such as

ψwp(x, t) =
∑

i

wki
ψki

(x, t) (3.6)

or by using a continuous weight function w(k),

ψwp(x, t) =

∫
w(k)ψk(x, t)dk (3.7)

An important example of Gaussian shape wave-packet is described in Appendix A.
While each component ψk is an eigenfunction of (i.e. solution of) the time-independent

Schrödinger equation (3.2), their superposition ψwp is not, for it is a mixture of ψk’s
having different energies Ek = h̄2k2/2m. Namely,

Ĥψwp(x, t) =
∑

i

wki

h̄2k2
i

2m
ψki

(x, t) or

∫
w(k)

h̄2k2

2m
ψk(x, t)dk (3.8)

is not proportional to ψwp(x, t). But this does not cause any trouble. If it were a
solution of the time-independent Schrödinger equation, as we saw in Sec 2.2, it should
represent a stationary standing wave and therefore does not fit with the picture of
a flying free ‘particle’. In other words, being the solution of the time-independent
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Schrödinger equation is not a requirement, but just the condition to be in a stationary
state having a definite energy. The time-dependent Schrödinger equation (2.1) is a more
general and fundamental law, by which the dynamics of the wave functions Ψ(x, t) are
predicted.

3.3 Box potential

Let us now revisit the 1-dimensional box potential considered briefly and qualitatively
in Sec 1.1.2. We first note that the equation should be the same as the free particle
case in the region 0 < x < L, so the wave function in this region has the form

ψ(x) = A eikx +B e−ikx (3.9)

However, we now have a different condition from the free particle case such that the
potential diverges to +∞ at the boundaries x = 0 and L. Since it is physically
unacceptable to allow the particle to have a probability to be found in the region of
infinite potential energy, the wave function must vanish at these boundaries

ψ(0) = ψ(L) = 0 (3.10)

These two conditions limit the possible values of A, B and k. Before starting the maths,
let us review the diagram in Sec 1.1.2 and see that in order for the wave function to fit
within the length L with the conditions Eq (3.10), the wave length λ must satisfy

L =
λ

2
× n (n = 1, 2, 3, · · · ) (3.11)

Question:

1. From ψ(0) = 0, show that ψ(x) is proportional to a sine function of x.

2. From ψ(L) = 0 show that kL is limited to be nπ where n is any integer number.
Confirm that this corresponds to Eq (3.11).

3. Show that the solution with n = 0 is not physically acceptable.

4. Show that the sets of wave functions with negative and positive n are not inde-
pendent from each other. Therefore, an independent set of wave functions can
be specified only by positive n.

5. Remember how we derived E = h̄2k2/2m for the free particle. Does this also
apply for the present case of the box potential? Using this and the condition for
k obtained in Question 2, derive Eq (1.5).
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We have found ψ(x) ∝ sin(nπx/L). In order to completely determine the wave
function, we impose the normalization condition,

∫ L

0
|ψ(x)|2dx = 1, which finally gives

Eq (1.4).

3.4 Classically forbidden regions

We now consider a rectangular barrier potential with height V0,

V (x) =

{
V0 (0 < x < L)
0 (x ≤ 0, x ≥ L)

(3.12)

and assume that the energy of the incident particle E is smaller than the barrier,
E < V0. Again, outside the barrier region, in x ≤ 0 and x ≥ L where V (x) = 0, the
wave function has the same form as the free-particle case

ψ(x) = A eikx +B e−ikx (3.13)

In the barrier region 0 < x < L, the Hamiltonian is

Ĥ = − h̄2

2m

d2

dx2
+ V0 (3.14)

The Schrödinger equation is similar to the free-particle case, but now the energy is
shifted by a constant V0. Let us denote the wave function in this region as φ(x). The
Schrödinger equation is

− h̄2

2m

d2φ(x)

dx2
= (E − V0) φ(x) (3.15)

Because E − V0 < 0, the solution is qualitatively different from the free particle case –
it is given by the ordinary (real) exponential functions

φ(x) = A′ eκx +B′ e−κx (3.16)

Note the difference from the oscillatory complex function e±ikx for the free-particle case.
The functions e±κx are monotonic. The difference stems from the sign of E − V0 < 0.

The remaining task is to joint smoothly the oscillatory function ψ(x) and the mono-
tonic function φ(x) at the boundaries x = 0 and L. The condition is such that both
the functions ψ and φ and their gradients dψ/dx and dφ/dx are continuous at the
boundaries.
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The precise mathematical expression is rather involved even for this simple rectan-
gular barrier case (see the textbooks for details), but the basic idea itself is as simple
as described qualitatively here, which is sufficient to sketch the wave function schemat-
ically.

Question :

1. Draw schematically the wave functions in a rectangular well potential having a
finite depth (as in the middle of the diagrams in Sec 1.4, but with the energy
levels in the well).

2. Look at the wave functions of harmonic oscillator shown in Sec 1.1.3. Do they
show qualitatively similar behavior?

4 Perturbation and Variation Methods

4.1 Helium atom

The Hamiltonian of a helium atom is, neglecting the motion

of the nucleus, given by

H = − h̄2

2m
(∇2

1 +∇2
2)−

Ze2

r1
− Ze2

r2
+
e2

r12
(4.1)

Here and hereafter we omit, just for notational simplicity, the

constant factor 1/4πε0 from the Coulomb potential. Even for

this simple two-electron atom, the Schrödinger equation

Hψ(r1, r2) = Eψ(r1, r2) (4.2)

e

e-

-

r

r

1

2

r 12

He (Z=2)
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has not been solved analytically. Indeed, we have only limited number of systems that
have been solved analytically, e.g., free particle, rectangular potential, harmonic os-
cillator, and Coulomb potential (hydrogen-like atoms). In practice, as in classical
mechanics, it is nearly hopeless to obtain analytical solutions when more than two par-
ticles are interacting. In chemical applications, therefore, we almost inevitably need
to resort to variety of approximation techniques, of which two representatives are the
perturbation and variation methods.

Both of these have time-independent and dependent versions. We illustrate and
compare the time-independent ones by using the helium atom as an illustrative ex-
ample. The time-dependent perturbation theory will be discussed in Sec 8 with ap-
plications to molecular spectroscopy. The time-dependent variation theory is a rather
advanced topic and will not be treated in this lecture. ‡

4.2 Perturbation Theory (time-independent)

We divide the Hamiltonian into two parts

H = − h̄2

2m
(∇2

1 +∇2
2)−

Ze2

r1
− Ze2

r2︸ ︷︷ ︸ +
e2

r12︸︷︷︸
= H0 + H ′

(4.3)

Note that H0 is a sum of the hydrogen-like § Hamiltonians for each of the two electrons

H0 = h0(r1) + h0(r2) (4.4)

h0(r) = − h̄2

2m
∇2 − Ze2

r
(4.5)

for which we already know that the exact analytical solutions are the s, p, d, · · · atomic
orbitals (e.g. Eq (4.10) below). For example, the 1s function χ1s(r) satisfies

h0(r)χ1s(r) = E1sχ1s(r) (4.6)

where E1s denotes the 1s energy level (see Question 3 below).
Now suppose that we neglected the electron-electron interaction H ′ and only con-

sider the two electron system with H0. Without the interaction H ′, the motions of

‡If you are still interested, my paper, K. Ando, Journal of Chemical Physics, Vol. 121, No. 15, pp.
7136-7143 (2004), http://dx.doi.org/10.1063/1.1793152, contains some key references.

§The hydrogen-like atoms are one-electron atoms such as H, He+, Li2+, Be3+, · · · .
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the two electrons are independent of each other. Therefore, they each follow their own
H-like Hamiltonian h0 such that to occupy the 1s orbital independently. ¶ The solution
of the Schrödinger equation ‖

H0 ψ
(0)(r1, r2) = E(0) ψ(0)(r1, r2), (4.7)

is thus given by a simple product of χ1s’s of each electron

ψ(0)(r1, r2) = χ1s(r1)χ1s(r2) (4.8)

Note that this looks in accordance with the Aufbau configuration, He : (1s)2

Question :

1. Using Eq (4.6), show that Eq (4.8) is a solution of Eq (4.7).

2. Express E(0) of Eq (4.7) by E1s of Eq (4.6). How do you explain this in terms of
the assumed relation between the two electrons?

3. Let us define EH = −hcRH = −13.60 eV, the 1s electronic energy of hydrogen
atom (Z = 1). Express E1s by EH and Z.

Now, the basic idea of the 1st-order perturbation theory is to employ this approxi-
mate (0th order) wave function to evaluate the total energy ∗∗

E ' 〈ψ(0)|H|ψ(0)〉 = 〈ψ(0)|(H0 +H ′)|ψ(0)〉 = E(0) + 〈ψ(0)|H ′|ψ(0)〉 (4.9)

By using the 1s wave function for the H-like atoms,

χ1s(r) =
1√
π

(
Z

a0

) 3
2

e−Zr/a0 (4.10)

in which a0 is the Bohr radius, we can explicitly write the second term as

E(1) = 〈ψ(0)|H ′|ψ(0)〉 =
1

π2

(
Z

a0

)6 ∫ ∫
e2

r12
e−2Z(r1+r2)/a0dr1dr2 (4.11)

¶We are neglecting here the spin of the electrons, or implicitly assuming that the two electrons
have different (anti-parallel) spins.

‖The superscript (0) means that ψ(0) and E(0) correspond to the non-interacting Hamiltonian H0.
∗∗In this lecture course, it is sufficient to consider that the Dirac’s bra-ket is a notational simplifi-

cation of the integral over the space coordinates, i.e.,

〈Ψ|Â|Φ〉 ≡
∫

Ψ∗ÂΦ dx
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The calculation is rather elaborate though well-defined; †† the result is

E(1) = −5

4
ZEH . (4.12)

Therefore,

E ' E(0) + E(1) = (2Z2 − 5

4
Z)EH =

11

2
EH = −74.80eV (4.13)

In the last two, we have put Z = 2 for helium.

4.3 Variational method

The other representative approximation method, the variational method, is rather
different from the perturbation method. Let us see how it works on the same problem
of the electronic energy of helium atom.

Considering that the (Aufbau) form of Eq (4.8)

ψ(0)(r1, r2) = χ1s(r1)χ1s(r2) =
1

π

(
Z

a0

)3

e−Z(r1+r2)/a0 (4.14)

would be a good starting point, we assume an analogous form for the trial function

φα(r1, r2) =
1

π

(
α

a0

)3

e−α(r1+r2)/a0 (4.15)

in which the nuclear charge Z has been replaced by a variable parameter α. We
then seek for the best value of α. This α can be considered as the effective nuclear
charge which takes account of the shielding effect by the other electron(s) of the
bare nuclear charge Z.

Question : What was the fundamental assumption to derive Eq (4.8) in the previous
subsection? (This way of describing the many-electron wave functions by a product of
one-electron orbitals is called “independent particle approximation”.)

The trial wave function φα attempts to take account of the electron-electron interac-
tion in the form of the shielded effective nuclear charge. This shielding effect will result
in the optimal α somehow smaller than Z. As seen in Eq (4.10) with Z replaced by α,
the smaller nuclear charge α means that the electron orbital is expanded in space. This
expansion can be regarded as a consequence of the electron-electron repulsion effect.

††See, Atkins & Friedman, Sec 7.8; Pauling & Wilson, Sec 23b and Appendix V.
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The problem is now to find the optimal value of the parameter α. The variational
theorem states that the exact ground state energy is always lower than the energy
from the approximate trial wave function. This means that the best approximation
should be obtained by minimizing

E(α) = 〈φα|H|φα〉 (4.16)

as a function of the parameter α. The calculation of this integral is very similar to
that of Eq (4.11). The result is ‡‡

E(α) = (−2α2 + 4Zα− 5

4
α)EH (4.17)

This simple quadratic function of α has a single minimum (note that EH < 0) which
determines the variationally best α.

Question : Find the minimum of E(α). Is the value of α at the minimum larger or
smaller than Z? How do you interpret it?

1st-order Perturbation Variation Experiment

E (eV) -74.80 -77.45 -78.98
IP (eV) 20.40 23.05 24.58

4.4 Summary: Perturbation Theory (time-independent)

In this section, we only summarize without the derivation the general results of the
time-independent perturbation theory. The derivation is via a straightforward (though
slightly tedious) algebra as described in the textbooks. ∗

Assume: the solutions ψ
(0)
n and E

(0)
n for the reference Hamiltonian H0 are known:

H0ψ
(0)
n = E(0)

n ψ(0)
n (n = 0, 1, 2, · · · ) (4.18)

Then, a small perturbation energy V is added to H0: H = H0 + V . (In other words,
we divide the full Hamiltonian H into the known part H0 and the rest V .) Now we
want the (approximate) solution of

Hψn = Enψn (n = 0, 1, 2, · · · ) (4.19)

‡‡Confirm that this reduces to Eq (4.12) when α = Z.
∗See, Atkins & Friedman, Sec 6.2-6.5; Pauling & Wilson, Sec 23, 25.
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based on the knowledge of the solutions of Eq (4.18) for H0. The perturbation theory
answers to this as

En = E(0)
n + 〈ψ(0)

n |V |ψ(0)
n 〉+

∑
k 6=n

|〈ψ(0)
n |V |ψ(0)

k 〉|2

E
(0)
n − E

(0)
k

+ · · · (4.20)

ψn = ψ(0)
n +

∑
k 6=n

〈ψ(0)
n |V |ψ(0)

k 〉
E

(0)
n − E

(0)
k

ψ
(0)
k + · · · (4.21)

These formulas indicate that the change of the wave function from the reference
ψ

(0)
n due to the perturbation V is described by the mixing of the other functions ψ0

k.
The mixing coefficient is proportional to the integral of the perturbation energy V
sandwiched by these functions, 〈ψ(0)

n |V |ψ(0)
k 〉. This integral represents the coupling

strength between these reference states, and is called the ‘transition matrix element’.
It is also seen in Eq (4.21) that the mixing is proportional to (E

(0)
n − E

(0)
k )−1, which

means that two states mix better when their energies are closer.
The corrected energy Eq (4.20) has somehow an analogous form: the transition

matrix elements in the numerator (note however that they are the absolute squares)
and the energy difference in the denominator. These terms are the second-order per-
turbation corrections which was not considered in the helium example in the previous
section. The application of the second-order perturbation theory to the polarizability
of molecules is discussed in Sec 7.

Note: The theory breaks down when there exist energy degeneracies, i.e., when a pair
or pairs of the reference states has the same energy, E

(0)
n = E

(0)
k . This is easily seen

in the formulas containing the energy differences in the denominator. The degenerate
cases should be treated in a different way, which will be out of the scope of this lecture
course. †

4.5 Summary: Variational Theorem

In this section, we summarize the variational theorem together with a short proof.
The theorem itself is very simple and easy to appreciate or memorize. The proof
is also fairy compact, although it requires the knowledge and understanding of the
concept of completeness and orthonormality of the eigenfunctions of Hermite operators
that include Hamiltonians. However, this lecture course does not require complete
understanding of these mathematical jargons and the proof of the theorem, because

†See, Atkins & Friedman, Sec 6.8; Pauling & Wilson, Sec 24.
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they are not essential for the rest of the materials where the major aims are to see how
the method can be applied to chemical problems. More thorough description of the
theorem with applications can be found in the textbooks. ‡

Suppose we are to evaluate the ground state energy E0 of a Hamiltonian H. From
some physical intuitions or model considerations, we set up a trial wave function φ
which contains some variable parameters. The variational theorem guarantees that the
energy expectation value from any trial wave functions will never be lower than the
exact energy E0

E0 ≤
〈φ|H|φ〉
〈φ|φ〉

, φ = trial function (4.22)

(Note the existence of the denominator in the right hand side.§) Therefore, the best
approximation is obtained by minimizing the right hand side within the parameter
space of the trial function.

Proof: Suppose that the exact solutions are ψn and En:

Hψn = Enψn (n = 0, 1, 2, · · · ) (4.23)

Of course, we don’t know what they are (otherwise we don’t need to attempt the ap-
proximate calculations at all!). However, we know that the exact wave functions consti-
tute a complete orthonormal set, which means that we can describe any functions
(in the same coordinate space under consideration) in terms of a linear combination of
this set {ψn}. We can thus express our trial wave function as

φ =
∞∑

n=0

cnψn (4.24)

‡See, Atkins & Friedman, Sec 6.9; Pauling & Wilson, Sec 26.
§We did not include the denominator 〈φ|φ〉 previously in Eq (4.16). This was because the functional

form of Eq (4.15) automatically guarantees that the wave function is normalized, i.e., 〈φα|φα〉 = 1,
for any value of the parameter α. However, this is not always the case for general trial functions. For
example, the LCAO wave functions (to be treated in the next section) are not normalized as they
are, so long as we treat the coefficients as free parameters. We therefore need the denominator in Eq
(4.22) in order to normalize the expectation value of the Hamiltonian H.
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Then, the expectation value of H over φ and the exact energy E0 are compared as

〈φ|H|φ〉 − E0〈φ|φ〉 = 〈φ|H − E0|φ〉 =
∞∑

n=0

∞∑
m=0

c∗ncm〈ψn|H − E0|ψm〉

=
∑

n

∑
m

c∗ncm(En − E0)〈ψn|ψm〉 =
∑

n

∑
m

c∗ncm(En − E0)δnm

=
∑

n

|cn|2(En − E0)

≥ 0 (⇐ because E0 is the lowest of En)
(4.25)

And because 〈φ|φ〉 =
∫
|φ|2dx ≥ 0, we find that Eq (4.22) is true.

Note: δnm = 1 when n = m, and otherwise 0. (This is called the Kronecker’s delta)
{ψn} is an orthonormal set ⇔ 〈ψn|ψm〉 = δnm

5 LCAO-MO Method

5.1 Diatomic molecule

One of the major advantages of the variational method is its versatility. We can employ
any form of the trial function so long as it is physically sensible. The quality of the
approximation solely depends on the choice of the trial function.

The most straightforward and general form of the trial function would be a linear
combination of some appropriate set of basis functions {fi}

φ(x) =
∑

i

ci fi(x) (5.1)

The coefficients ci are then taken to be the variational parameters. The central appli-
cation of this idea in chemistry is the LCAO-MO method, molecular orbitals (MOs)
formed by a linear combination of atomic orbitals (AOs).

Let us consider, for example, a diatomic molecule A-B. We also assume, for simplic-
ity, that the atoms A and B each contribute one electron in AOs χA and χB to form a
covalent bond A-B. The molecular orbital in the LCAO-MO method is then described
as

φ = cAχA + cBχB (5.2)
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We further assume that cA and cB are real numbers, and χA and χB are normalized,
i.e., 〈χA|χA〉 = 〈χB|χB〉 = 1. At this stage they are not necessarily orthogonal to each
other, namely, the overlap integral may be finite, SAB = 〈χA|χB〉 6= 0. The expectation
values of the Hamiltonian H over the AOs, e.g., HAA = 〈χA|H|χA〉, represent the
atomic energies. These may be computed numerically as in Eq (4.11), or be estimated
from spectroscopic experiments, or may be simply taken as empirical parameters (as
in the Hückel theory). The integral of H sandwiched by the different AOs, HAB =
〈χA|H|χB〉, is called the “transfer energy” or “resonance energy” that describes the
electron delocalization effect over the two AOs.

Now we express the expectation value of the Hamiltonian over the MO φ in terms
of the AO integrals HAA, HBB and HAB:

〈φ|H|φ〉 = c2AHAA + cAcB(HAB +HBA) + c2BHBB (5.3)

Similarly, the self-overlap integral is expressed as

〈φ|φ〉 = c2A + cAcB(SAB + SBA) + c2B (5.4)

Our task is to find the best MO coefficients cA and cB from the variational principle.
To this end, we consider the variation of the energy expectation value E

E =
〈φ|H|φ〉
〈φ|φ〉

(5.5)

as a function of these parameters cA and cB. Remember that the denominator 〈φ|φ〉
is needed because φ is not necessarily normalized to unity as it contains the unknown
parameters cA and cB. (See the footnote in Sec 4.5.)

According to the variational method, we search the optimal values of cA and cB
that minimize E. The necessary conditions are ∂E/∂cA = ∂E/∂cB = 0. Although it
is possible to differenciate Eq (5.6) directly, it would be rather easier to first rearrange
it as

Eq (5.6) ⇒ E〈φ|φ〉 − 〈φ|H|φ〉 = 0 (5.6)

Then, by differentiating with respect to cA,

∂E

∂cA
〈φ|φ〉+ E

∂

∂cA
〈φ|φ〉 − ∂

∂cA
〈φ|H|φ〉 = 0 (5.7)

Using Eqs (5.3) and (5.4),

∂E

∂cA
〈φ|φ〉+ E(2cA + 2cBSAB)− (2cAHAA + 2cBHAB) = 0 (5.8)
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Applying the stationary condition ∂E/∂cA = 0 and rearranging the terms,

(HAA − E)cA + (HAB − ESAB)cB = 0 (5.9)

Similarly, from ∂E/∂cB = 0,

(HBA − ESBA)cA + (HBB − E)cB = 0 (5.10)

Combining these two into a matrix form,[
HAA − E HAB − ESAB

HBA − ESBA HBB − E

] [
cA
cB

]
=

[
0
0

]
(5.11)

This may be written in an abstract and general form,

(H− ES) c = 0 (5.12)

Now, in order to have non-zero solutions c 6= 0, it is necessary that the determinant of
the matrix H− ES vanishes.

|H− ES| = 0 (5.13)

(Otherwise the inverse matrix (H−ES)−1 exists, which is then multiplied to Eq (5.12)
from the left to give c = (H−ES)−1 0 = 0.) Eq (5.13) gives the condition to determine
the MO energy E and is called the Secular Equation. After determining the value(s)
of E, we put it back into the matrix equation (5.11), from which the coefficients cA
and cB can be determined.¶

If we employ from the beginning a set of orthonormal AOs, i.e., 〈χA|χB〉 = 0 for
A 6= B, then the overlap matrix is the unit matrix, S = I and the matrix equation
(5.12) is simplified as

(H− EI) c = 0 ⇒ Hc = Ec (5.14)

Namely, the problem reduces to the matrix eigenvalue problem. The matrix eigen-
value equation can be solved by the matrix-diagonalisation procedure which is nowa-
days very straightforward on computers.

¶More precisely, what we can determine is only the ratio cA : cB because the two lines of Eq (5.11)
becomes equivalent to each other such that we essentially have only one equation for cA and cB .
Indeed, this is exactly what the secular equation (5.13) imposes to the matrix equation. Namely, the
consequence of the secular equation is to colapse the two lines from Eq (5.11) in the cA-cB coordinate
plane. After determining the ratio cA : cB , the normalization condition 〈φ|φ〉 = 1 specifies the numbers
for cA and cB . See Eq (5.4).
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5.2 Generalization

In the previous section, we started with a simple 2×2 problem, i.e., the LCAO-MO
formed by two AOs. Obviously, as suggested by the general matrix formula (5.12), the
discussion can be straightforwardly generalized to arbitrary number (N) of the basis
(AO) functions :

φ =
N∑

i=1

ci χi (5.15)

Moreover, as would be easily inferred, this procedure is not bound to the LCAO-MO
problem. General problems, in which the trial wave function may be modelled by a
linear combination of a (sensible) set of basis functions, can be handled analogously in
terms of the secular equation.

5.3 Hückel MO theory

One of the simplest treatment of the π MOs of conjugate planer hydrocarbons is the
Hückel MO method, in which we only consider one π electron per carbon atom and
describe the π MOs as a linear combination of these 2pπ AOs. We further introduce
the following simplifying assumptions:

• The 2pπ AOs are orthogonal to each other and normalized (i.e., orthonormal
basis functions that give S = I).

• All the diagonal elements of the Hamiltonian matrix are represented by a single
parameter α, i.e., H11 = H22 = · · · = α. This is the energy of the carbon 2pπ
AO.

• The off-diagonal matrix elements are set to be another common parameter Hij =
β only when the carbon atoms i and j are connected; otherwise Hij = 0

The first assumption is valid only approximately: Obviously, neighbouring carbon 2pπ
AOs have a finite overlap, though much smaller than the overlap between the 2pσ AOs.
The second assumption implies that the diagonal energy is an intrinsic atomic quantity,
and that its dependence on the chemical environment may be neglected. Because of
this and the third assumption, the Hückel method does not distinguish between any
conformational isomers, e.g., cis- and trans- forms of linear polyenes.

25



For example, the Hückel Hamiltonian matrix for butadiene is given by

H =


α β 0 0
β α β 0
0 β α β
0 0 β α

 (5.16)

Obviously, this does not distinguish cis- and trans-butadienes. The secular equation is

det


α− ε β 0 0
β α− ε β 0
0 β α− ε β
0 0 β α− ε

 = 0 (5.17)

It is not too difficult to solve this equation by hand if you know, for example, the
method of Laplace expansion by cofactors, However, because this procedure is well-
defined, it is very straightforwardly handled by computers these days.

Question:

1. Calculate the Hückel MO energies and coefficients for ethylene (C2H4) and allyl
cation (C3H

+
5 ).

2. Write down the Hückel Hamiltonian of benzene (C6H6) and hexatriene (C6H12).
How do they differ?

Note: We can generalize the method to include the hetero-atoms (e.g., N, O) by
introducing different parameters (e.g., αN , βCN etc.). It is also possible to take account
of the σ bonds. The generalized theory is called the ‘extended Hückel’ method, which
played an important role for the discovery of the Woodward-Hoffman rule and the
Frontier MO theory.

6 Variation-perturbation method

Let us come back to Eq (5.14) in the orthogonal basis (S = I)

Hc = Ec (6.1)

or equivalently, the secular equation

|H− EI| = 0 (6.2)
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As we have seen in the examples of the Hückel theory, this is in general an N -th
order polynomial equation for the unknown E, where N is the number of the AO
basis functions, and therefore not very easy to solve analytically. However, there is
a technique to obtain approximate solutions. The approximation is valid when the
off-diagonal matrix elements Hij are small compared to the diagonals Hii. Small off-
diagonal Hij means that the interaction, or the mixing, between the ith and jth basis
functions is small. For example, in LCAO-MO method, small Hij means that the
interaction between the electrons in the AOs χi and χj is small, and therefore, the
modification of the energy due to the interaction is small. In this case, the electronic
energy levels are not much different from the original AO energies Hii and Hjj. The
energy levels with these small corrections are then given by‖

En ' Hnn +
∑
k 6=n

HnkHkn

Hnn −Hkk

+ · · · (6.3)

The derivation is related to the concept of ‘effective Hamiltonian’, which is outlined in
Appendix B.∗∗ However, instead of diving into the mathematical details, let us note
here that this formula is reminiscent of the ordinary perturbation theory in Sec 4.4

En = E(0)
n + 〈ψ(0)

n |V |ψ(0)
n 〉+

∑
k 6=n

|〈ψ(0)
n |V |ψ(0)

k 〉|2

E
(0)
n − E

(0)
k

+ · · · (6.4)

Indeed, the integral 〈ψ(0)
n |V |ψ(0)

k 〉 is called the matrix element of V in the basis set

{ψ(0)
i }, and is often written as Vnk. Its complex conjugate is given by exchanging n and k

such that 〈ψ(0)
n |V |ψ(0)

k 〉∗ = 〈ψ(0)
k |V |ψ(0)

n 〉, that is, V ∗
nk = Vkn. Therefore, |Vnk|2 = VnkVkn

which makes clearer the correspondence between Eqs (6.3) and (6.4).

Non-orthogonal case: When the basis functions are non-orthogonal, S 6= I, the
secular equation is written as

Hc = ESc ⇒ |H− ES| = 0 (6.5)

The variational perturbation formula is slightly modified accordingly (see Appendix B)

En ' Hnn +
∑
k 6=n

|Hnk − SnkHnn|2

Hnn −Hkk

+ · · · (6.6)

‖When there are degenerate diagonal elements, Hnn = Hkk, Eq (6.3) cannot be used because
the denominator diverges. This means that the method cannot be used for the ordinary Hückel
Hamiltonian where Hii = α for all the diagonal elements. Typical applications of the method are
discussed in the next section.

∗∗See also, Pauling & Wilson, Sec 27a.
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6.1 Application: Charge-transfer complex

6.1.1 Intermolecular CT spectra

Example 1: I2 in benzene ⇒ new absorption (∼300nm) absent in benzene or I2 alone.
Example 2: mixture of colorless organic liquids ⇒ colors

picric acid + benzene ⇒ yellow
+ naphtalene ⇒ dark yellow
+ anthracene ⇒ red
+ naphtacene ⇒ red

OH

NO2

NO2

NO2

+

Mulliken’s CT complex: “Resonance” A · D ↔ A− · D+

Ψ ' c1 ψ1(A · D) + c2 ψ2(A
− · D+) (6.7)

Non-orthogonal variational perturbation theory

E ' H11 +
|H12 − S12H11|2

H11 −H22

(6.8)

Namely, the energy of ψ1(A · D) is stabilized by

∆E(CT) ≡ E −H11 '
|H12 − S12H11|2

H11 −H22

due to the mixing of the CT state ψ2(A
− ·D+). Note

that ∆E(CT) < 0 because H11 −H22 < 0.

Correlation to the Ionization Potential and Electron Affinity:

H22 −H11 ' IP(D)− EA(A)

Usually, IP > EA for neutral molecules; for example, IP of organic molecules are
typically around several eV, while the EA is less than 1 eV. Therefore, CT interaction
is large when the IP of the electron donor is small and the EA of the acceptor is large;
this simply means that the charge transfer is energetically favorable.
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Correlation with the Orbital Overlap: H12 ∝ S12 (approximately)

∆E(CT) ∝ |S12|2 = |〈ψ1(A · D)|ψ2(A
− · D+)〉|2

' |〈ϕD(HOMO)|ϕA(LUMO)〉|2

Example: Structure of ion-molecule complex

Ag ... benzene complex

LUMO = 5s
(spherical)

HOMO =
⇒

Ag Ag

6.2 Application: Frontier MO theory

Molecule A:

• MO φi =
∑

r cirχr (MO index i , AO index r )

• MO energies Ei (ie, 〈φi|hA|φi′〉 = Eiδii′ )

Molecule B:

• MO φk =
∑

s cksχs (MO index k , AO index s )

• MO energies Ek (ie, 〈φk|hB|φk′〉 = Ekδkk′ )

Interaction energy:
According to the variational perturbation theory, the energy change of the ith MO
energy of molecule A due to interaction with B is given by

δEi =
all∑

k∈B

|h′ik|2

Ei − Ek

(6.9)

in which the summation is over all the MOs (occupied and unoccupied) of molecule B.
h′ik ≡ 〈φi|h′|φk〉 represents the interaction energy between the MOs φi in molecule A
and φk in molecule B. Similarly, the energy change of the kth MO energy of molecule
B due to interaction with A is

δEk =
all∑

i∈A

|h′ik|2

Ek − Ei

(6.10)
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The total energy change is

∆E = 2
occ∑
i

δEi + 2
occ∑
k

δEk = 2(
occ∑
i

all∑
k

−
all∑
i

occ∑
k

)
|h′ik|2

Ei − Ek

(6.11)

in which the factor 2 takes account of the occupation of up and down spins. As derived
in Appendix C, this is converted to a form that represent interaction between occupied
and unoccupied MOs. That is, the molecular interaction is described in terms of the
electron delocalization from the occupied MOs of one molecule to the unoccupied MOs
of the other.

Moreover, assuming that the terms with small denominator are dominant, ∆E is
approximated by the HOMO-LUMO interaction

∆E '
2|h′HO(A),LU(B)|2

EHO(A) − ELU(B)

−
2|h′LU(A),HO(B)|2

ELU(A) − EHO(B)

(6.12)

This is the basis of the Frontier MO (FMO) theory. Remember that the matrix element
h′ik is based on the MOs rather than AOs. By using the LCAO-MO expansions φi =∑

r cirχr and φk =
∑

s cksχs, and the defining the interaction energy in terms of the
AOs, βrs ≡ 〈χr|h′|χs〉, we get

h′ik =
∑

r

∑
s

circksβrs (6.13)

In Eq (6.12), the MO pair (i, k) is represented by the HOMO and LUMO of molecules
A and B, such that the coefficients cir and cks for the HOMO and LUMO, i.e., (i, k)
= (HO(A), LU(B)) and (LU(A), HO(B)), determine the molecular interaction. In this
way, we particularly look at the HOMO-LUMO coefficients in the FMO theory.
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7 Electronic polarizability

7.1 Quantum mechanical expression

We come back to the perturbation theory summarized in

Sec 4.4. In the treatment of helium atom in Sec 4.1, we

only considered the 1st-order perturbation just to illustrate

the basic idea. The 2nd-order perturbation theory would

be, on the other hand, best illustrated in chemistry by the

application to electronic polarizability of molecules.

For simplicity, we first consider a diatomic molecule A-B

which has a permanent dipole µ. We then place this diatomic

in a uniform electric field of strength ε directed parallel to

the bond axis. The field will induce rearrangement of the

charge distribution and alter the molecule’s dipole moment

µ such as

µ → µ+ α ε+
1

2
β ε2 + · · · (7.1)

in which the coefficients α and β are called polarizability and hyperpolarizability.
The energy of the molecule also changes as (see Appendix D)

E → E − µ ε− 1

2
α ε2 − 1

3!
β ε3 + · · · (7.2)

Comparing this with the Taylor expansion of the energy E as a function of the field
strength ε

E(ε) = E(0) +

(
dE

dε

)
0

ε+
1

2

(
d2E

dε2

)
0

ε2 +
1

3!

(
d3E

dε3

)
0

ε3 + · · · (7.3)

we find

µ = −
(
dE

dε

)
0

, α = −
(
d2E

dε2

)
0

, β = −
(
d3E

dε3

)
0

(7.4)

The subscript 0 means the derivatives at ε = 0.
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Now let us consider this problem in quantum mechanics. To compare with the
above formula, we consider the energy change of the molecule under the electric field.
We start by assuming that we already know the solution of the Schrödinger equation
without the field

H0φn = E(0)
n φn (n = 0, 1, 2, · · · ) (7.5)

(Note the different notation from Sec 4.4. Here we use φn rather than ψ
(0)
n for notational

simplicity.) Now, by applying the electric field, the Hamiltonian changes

H0 → H0 + V (7.6)

We will specify later how this interaction V is described in terms of the molecular prop-
erties and the field strength ε. But before doing it, let us write down the perturbation
theoretical expression of the energy change due to this additional interaction V (see
Eq (4.20))

En = E(0)
n + 〈φn|V |φn〉+

∑
k 6=n

|〈φn|V |φk〉|2

E
(0)
n − E

(0)
k

+ · · · (7.7)

The remaining task is to express the interaction V in terms of ε and then compare with
Eq (7.4) to find the quantum mechanical expression for the polarizability.

The interaction of the molecule with the electric field is given by

V = −µ ε (7.8)

By putting this into Eq (7.7), we get

En = E(0)
n − 〈φn|µ|φn〉ε+

∑
k 6=n

|〈φn|µ|φk〉|2

E
(0)
n − E

(0)
k

ε2 + · · · (7.9)

Comparing this with Eq (7.4) we find

α = −2
∑
k 6=n

|〈φn|µ|φk〉|2

E
(0)
n − E

(0)
k

(7.10)

The quantity 〈φn|µ|φk〉 is called transition dipole moment, which also plays a key
role in molecular spectroscopy.

Notes:
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1. The molecular dipole moment is a vector given by a sum of the position vectors
multiplied by the charges of all the particles (electrons and nuclei)

µ = e
∑

I

ZIRI − e
∑

i

ri (7.11)

2. † To simplify the argument, we have neglected the relative directions of the dipole
moment and the applied field. In general, the induced dipole is not necessarily
parallel to the field, so that the polarizability is a 3× 3 matrix (or tensor)

induced dipole: µ′ = α · E or

µ′xµ′y
µ′z

 =

αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

 Ex

Ey

Ez

 (7.12)

7.2 Closure approximation

7.2.1 Preparation

The integral 〈φi|A|φj〉 is often called the matrix element Aij of operator A in the
basis {φi}. Although the dimension of this ‘matrix’ may be infinite, since there can
be infinite number of energy levels and thus wave functions {φi}, we consider (or
define) their algebra analogously to the ordinary matrix algebra. So, analogously to
the ordinary matrix multiplication

(AB)ij =
∑

k

AikBkj (7.13)

applies the following algebra for the integrals

〈φi|AB|φj〉 =
∑

k

〈φi|A|φk〉〈φk|B|φj〉 (7.14)

Note†: This also suggests a symbolic relation∑
k

|φk〉〈φk| = 1 (7.15)

which is called “completeness relation”.
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7.2.2 Hermite operator

One more preparation for the main topic of this subsection. By construction, the wave
functions are generally complex functions, i.e., have real and imaginary parts. Quantum
mechanics also postulates that all the observable physical quantities are represented
by Hermite operators which satisfy for any wave functions Ψ and Φ

〈Ψ|Ω̂|Φ〉 = 〈Φ|Ω̂|Ψ〉∗ ( or = 〈Ω̂Ψ|Φ〉 ) (7.16)

We can show that the eigenvalues of Hermite operators are always real. (In other
words, we postulate that physical observables are associated with Hermite operators
because they give real eigenvalues.) More details are given in textbooks, but in fact all
we need here is just

|〈φn|V |φk〉|2 = 〈φn|V |φk〉〈φn|V |φk〉∗ = 〈φn|V |φk〉〈φk|V |φn〉 (7.17)

7.2.3 Closure approximation

Now, let us look at the 2nd-order term in Eq (7.7). It contains Eq (7.17) in the
numerator, so at first sight we might think of using Eq (7.14). However, we can’t
because the denominator also depends on the summation index k.

For the reason to be explained shortly, let us consider the ground state energy with
n = 0:

E0 = E
(0)
0 + 〈φ0|V |φ0〉+

∑
k 6=0

|〈φ0|V |φk〉|2

E
(0)
0 − E

(0)
k

+ · · · (7.18)

As is often observed, the electronic ground state energy E
(0)
0

is usually well separated from the excited state energies.

Then, the denominator E
(0)
0 − E

(0)
k may be represented by

a constant ∆E and approximately factored out

E0 ' E
(0)
0 + 〈φ0|V |φ0〉 −

1

∆E

∑
k 6=0

|〈φk|V |φ0〉|2 (7.19)

so we can make use of Eqs (7.17) and (7.14)∑
k 6=0

|〈φk|V |φ0〉|2 =
∑
k 6=0

〈φ0|V |φk〉〈φk|V |φ0〉

=
∑

k

〈φ0|V |φk〉〈φk|V |φ0〉 − 〈φ0|V |φ0〉〈φ0|V |φ0〉

= 〈φ0|V 2|φ0〉 − 〈φ0|V |φ0〉2

(7.20)
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Introducing notations such as 〈φ0|V |φ0〉 = 〈V 〉0 etc. we finally get

E0 ' E
(0)
0 + 〈V 〉0 +

1

∆E
〈δV 2〉0 (7.21)

where δV ≡ V − 〈V 〉0 is the deviation of V from its average 〈V 〉0, and 〈δV 2〉0 =
〈V 2〉0 − 〈V 〉20 is the mean-squares fluctuation of V .

Question: Confirm the derivation through Eqs (7.20)-(7.21).

7.2.4 Approximation of polarizability

It is straightforward to apply the closure approximation to the molecular polarizability

α ' 2

∆E
〈δµ2〉0 (7.22)

Therefore, the polarizability is proportional to the mean-squares fluctuation of the
dipole moment. It is also seen that the polarizability is large when the electronic
excitation energy ∆E is small. This is in accord with the fact that molecules with π
electrons generally have high polarizabilities.

Remember that we neglected the anisotoropy of the polarizability. What we usually
observe is the average of the three directions

ᾱ =
1

3
(αxx + αyy + αzz)

=
2

3

〈δµ2
x + µ2

y + µ2
z〉0

∆E
=

2

3

〈δµ2〉0
∆E

(7.23)

We further invoke the following approximations:

1. 〈δµ2〉0 ' e2〈δr2〉0,
where 〈δr2〉0 represents the expansion of the electron cloud in the molecule (or
simply the size of the molecule)

2. ∆E ∝ the ionization potential (I.P.) of the molecule.

to obtain

ᾱ ∝ e2〈δr2〉0
IP

(7.24)

This explains fairy well the qualitative trends in a series of comparable systems.
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8 Time-dependent perturbation theory

The previous section have dealt with the interaction of molecules with static electric
field. This causes redistribution of the charges in the molecule, as represented by the
induced dipole and polarizability. Now, what if the electric field was oscillating in
time, such as those in light? In this section we discuss a method to treat this kind of
time-dependent interaction, which is closely related to molecular spectroscopies.

8.1 Time-dependent interaction

As in the previous section, we assume that the wave functions are already known for the
system without the field, namely, we discuss how the perturbed states can be described
in terms of the unperturbes states

H0φn = E(0)
n φn (8.1)

As discussed in Sec 2, these are stationary states that show standing wave oscillation
along time

φn e
−iE

(0)
n t/h̄ (8.2)

Now we turn on the interaction V (t), which modifies the Hamiltonian

H = H0 + V (t) (8.3)

Because the Hamiltonian now depends on time, we look at the time-dependent Schrödinger
equation

ih̄
∂

∂t
ψ(t) = Hψ(t) (8.4)

It should be useful to expand this ψ(t) in terms of the zero-field wave functions Eq
(8.2),

ψ(t) =
∑

n

cn(t) φn e
−iE

(0)
n t/h̄ (8.5)

From the variation of the coefficient cn(t) we can discuss the population change among
the states φn induced by the interaction V (t). For example, if the system is originally
in the ground state (n = 0), we have c0 = 1 and cn = 0 for n ≥ 1. We turn on the
light whose photon energy matches with the excitation energy to the first excited state
n = 1. As a result, the photon absorption occurs such that c1 grows along time while
c0 decays.
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Inserting Eq (8.5) into Eq (8.4), multiplying φ∗k from the left and carrying out
integration over the particle coordinates with the use of the orthonormality 〈φk|φn〉 =
δkn we get

d

dt
ck(t) = − i

h̄

∑
n

Vkn(t)eiωkntcn(t) (8.6)

where Vkn(t) =
∫
φk(q)

∗V (q, t)φn(q)dq = 〈k|V (t)|n〉 and ωkn = (E
(0)
k − E

(0)
n )/h̄

Question: Verify Eq (8.6) for the two-state case where Eq (8.5) consists of two terms
n = 1 and 2.

8.2 Two-states resonance

It would be illustrative to consider a simplest case where the system is described by
two basis states, for which Eq (8.6) is

d

dt

[
c1(t)
c2(t)

]
= − i

h̄

[
V11(t) V12(t)e

iω12t

V21(t)e
iω21t V22(t)

] [
c1(t)
c2(t)

]
(8.7)

To grasp the essential features of this equation, let us introduce the following simplifying
assumptions:

• V11 = V22 = 0.
This is reasonable since V is supposed to represent interaction between different
states.

• V12(t) = V21(t) = v (constant)
This may appear to contradict with the current theme of time-dependent inter-
action. The idea will be clarified later in the Question.

• ω12 = 0, namely, E
(0)
1 = E

(0)
2 , so the two states are in “resonance”.

These simplify Eq (8.7)

d

dt
c1 = − i

h̄
v c2,

d

dt
c2 = − i

h̄
v c1 (8.8)

For the initial condition consider c1(0) = 1 and c2(0) = 0. This means that the system
population starts from state 1 and then transfers to state 2 due to the interaction.
With this initial condition, the solution of Eq (8.8) is given by

c1(t) = cos(vt/h̄), c2(t) = i sin(vt/h̄) (8.9)
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Therefore, c1 and c2 show alternate oscillation with the period ∝ v−1, which we call
“resonance” between the two states.

Note that the larger interaction v results in faster resonance.

Question

1. Derive Eq (8.9) from Eq (8.8). It is useful to consider c1 + c2 and c1 − c2.

2. Consider time-dependent interaction V12(t) = v e−iωt and V21(t) = v e+iωt. (This
implies that V (t) is Hermite, V12(t) = V21(t)

∗.) Assume again V11 = V22 = 0,

but this time ω12 6= 0, i.e., the two states have different energies E
(0)
1 6= E

(0)
2

(off-resonant). Now, what happens if the frequency ω of the interaction coincides
with the energy gap ω12? What is the implication of this to spectroscopies?

8.3 Perturbation theory

As shown in Eq (8.7) for the 2× 2 case, Eq (8.6) may be written in a matrix form

d

dt
c(t) = − i

h̄
W(t) · c(t) (8.10)

where the elements of the matrix W(t) is given by [W(t)]kn ≡ eiωkntVkn(t). This can
be formally integrated as

c(t) = c(0)− i

h̄

∫ t

0

W(τ) · c(τ)dτ (8.11)

This does not solve the problem since the right-hand-side contains c(t) itself in the inte-
gral. However, a recursive expansion obtained from this may be instructive. Inserting
the whole right hand side of Eq (8.11) into c(τ) in the integral

c(t) = c(0)− i

h̄

∫ t

0

W(τ) ·
{

c(0)− i

h̄

∫ τ

0

W(τ ′) · c(τ ′)dτ ′
}
dτ

= c(0)− i

h̄

∫ t

0

W(τ) · c(0)dτ +

(
−i
h̄

)2 ∫ t

0

dτ

∫ τ

0

dτ ′W(τ) ·W(τ ′) · c(τ ′)

(8.12)
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If we do this replacement again for the rightmost c(τ ′), a term of order W3 will emerge.
By repeating this, we obtain the perturbation expansion in terms of the interaction
W.

The first-order perturbation formula is simple and useful in many cases

c(1)(t) = c(0)− i

h̄

∫ t

0

dτW(τ) · c(0) (8.13)

Here the two state example would be illustrative again.[
c
(1)
1 (t)

c
(1)
2 (t)

]
=

[
c1(0)
c2(0)

]
− i

h̄

∫ t

0

dτ

[
V11(τ) eiω12τV12(τ)

eiω21τV21(τ) V22(τ)

] [
c1(0)
c2(0)

]
(8.14)

As before, let us consider the initial condition where the system start in state 1, i.e.,
c1(0) = 1 and c2(0) = 0. The population in state 2 will grow along time due to the
interaction. From Eq (8.14)

c
(1)
2 (t) = − i

h̄

∫ t

0

dτV21(τ)e
iω21τ (8.15)

The population in state 2 is

P
(1)
2 (t) = |c(1)

2 (t)|2 =
1

h̄2

∣∣∣∣∫ t

0

dτV21(τ)e
iω21τ

∣∣∣∣2 (8.16)

8.4 Fermi’s golden rule

The integration of Eq (8.16) is easy when V21 does not depend on time. We get

P
(1)
2 (t) = |V21|2

sin2(ω21t/2)

(h̄ω21/2)2
(8.17)

Question: Derive Eq (8.17). How does this look like as a function of ω21?
Equation (8.17) as a function of ω21 has a peak at ω12 = 0 whose width and height

are proportional to h̄/t and (t/h̄)2, respectively. Thus, it becomes sharper and sharper

as time t increases. ω12 = 0 means E
(0)
2 = E

(0)
1 , thus the transition probability is

largest when the energy is conserved. This condition of energy conservation becomes
more and more strict as t increases. In other words, the energy conservation is less
strict in the shorter time. This is a manifest of the uncertainty principle between time
and energy.
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In the limit of t → ∞, Eq (8.17) is written (symbolically) by using the so-called
delta-function

P
(1)
2 (t) → |V21|2

2πt

h̄
δ(E

(0)
2 − E

(0)
1 ) (8.18)

(You don’t need to worry too much about the mathematical issues around the delta-
function. It suffices here to consider it as a sharp limit of Eq (8.17)). The right hand
side is proportional to t, whose coefficient gives the transition rate

k21 =
2π

h̄
|V21|2 δ(E(0)

2 − E
(0)
1 ) (8.19)

This is called Fermi’s golden rule.

8.5 First-order spectra

As its name implies, the golden rule can be applied to a number of different phenomena.
The most important in chemistry is to absorption and emission spectra. Remember the
dipole approximation of the interaction between the molecules and the electric field,
Eq (7.8) of Sec 7. By replacing the static field ε by an oscillating one, ε e±iωt, we obtain
the dipole approximation of the light-molecule interaction

V (t) = −µ ε e±iωt (8.20)

Then, in Eq (8.16), the matrix element V21 is replaced by the transition dipole µ21 =
〈2|µ|1〉 and the exponential is by ei(ω21±ω)τ . The Fermi’s golden rule is thus expressed
as

k21 =
2π

h̄
ε2| µ21|2 δ(E(0)

2 − E
(0)
1 ± h̄ω) (8.21)

This represents the photo-absorption and emission between the states 1 and 2.

Question: Suppose the state 2 is higher in energy than state 1. Which sign of ±h̄ω
corresponds to the absorption?

8.6 Franck-Condon principle

In the adiabatic (Born-Oppenheimer) approximation where the motions of electrons
and nuclei are separated, the molecular wave function is represented by a product of
electronic and nuclear parts

Φε,ν(r, R) = χε,ν(R)ϕε(r;R) (8.22)
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where ε and ν are the electronic and nuclear quantum numbers, respectively. Namely,
ϕε(r;R) is the electronic wave function of the ε-th electronic state which is a function
of the electronic coordinates r and depends parametrically on the nuclear coordinates
R. χε,ν(R) is the nuclear wave function of the ν-th nuclear (vibrational or rotational)
state on the adiabatic potential surface of the ε-th electronic state.

The electronic transitions induced by a photon absorption or emission can be rep-
resented by the change of quantum numbers (ε, ν) → (ε′, ν ′). The transition dipole of
this process is

µε′ν′,εν = 〈ε′ν ′|µ|εν〉 =

∫
dR

∫
drχε′ν′(R)∗ϕε′(r;R)∗µχεν(R)ϕε(r;R) (8.23)

Let us carry out the integration over the electronic coordinate r first,

=

∫
dRχε′ν′(R)∗

{∫
drϕε′(r;R)∗µϕε(r;R)

}
χεν(R) (8.24)

The braced integral is the electronic transition dipole which we will denote as µε′ε(R).
It generally depends on the nuclear coordinate R. However, to a good approximation,
the dependence on R may be neglected and µε′ε(R) be represented by the value at the
equilibrium nuclear configuration R0,

µε′ν′,εν ' µε′ε(R0) · 〈χε′ν′|χεν〉 (8.25)

The factor 〈χε′ν′|χεν〉, given by the overlap integral between the nuclear wave functions
of the initial and final states of the transition, is called the “Franck-Condon factor”.

You might remember that the conventional (or semi-classical) description of the
Franck-Condon principle is stated as follows:

Because the electrons move much faster than the heavy nuclei, the nuclei
don’t move during the fast electronic transitions, which is pictured on the
potential energy diagrams as “vertical transitions”.

This qualitative description is made more precise by Eq (8.25).

Question: Sketch the potential energy curves and nuclear wave functions of the
ground and first excited electronic states of a diatomic. Using this, explain why the
Franck-Condon overlap is large for the vertical transitions.
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Appendices

A Gaussian wave packet

If we employ a Gaussian distribution w(k) ∝ e−a2(k−k0)2/2 for the weight of superposi-
tion in Eq (3.7),

ψwp(x, t) ∝
∫ +∞

−∞
e−a2(k−k0)2/2ψk(x, t)dk (A.1)

This integration is slightly tedious although very straightforward. The result is

ψwp(x, t) ∝
[
a(1 +

ih̄t

ma2
)

]−1/2

exp

[
− (x− h̄k0t/m)2

2a2(1 + ih̄t/ma2)
− ik0x+

ih̄k2
0

2m
t

]
(A.2)

(To derive, use a well-known integration formula
∫ +∞
−∞ e−ax2+ibxdx =

√
π
a
e−b2/4a. )

This has a simple form at t = 0

ψwp(x, 0) ∝ exp

[
− x2

2a2
− ik0x

]
(A.3)

peaked at x = 0 and having a width of ' a.
The probability amplitude, given by the absolute square of the wave function, also

has a Gaussian form

|ψwp(x, t)|2 ∝ exp

[
− (x− h̄k0t/m)2

a2(1 + ih̄t/ma2)

]
(A.4)

whose peak and width depend on time as

Peak at x =
h̄k0

m
t, Width ' a

√
1 + ih̄t/ma2 (A.5)

Namely, the packet centre travels at a constant velocity h̄k0/m determined by the
centre of the weight function w(k). The width of the packet broadens along time t.

We can confirm that the integration of this wave packet converges,∫ +∞

−∞
|ψwp(x, t)|2dx = finite (A.6)

In this sense, this wave packet is a physically acceptable description of free particles,
in contrast with the component wave functions ψk(x, t). As discussed generally in Sec
3.2, ψwp(x, t) does not satisfy the time-independent Schrödinger equation.
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B Effective Hamiltonian

Let us consider the matrix eigenvalue problem

Hc = Ec (B.1)

where c is an N -dimensional vector and H an N ×N matrix. We divide the problem
into two sub-dimensions N = nA + nB. Namely, we pick up the first nA elements of
c to form a new vector cA. The remaining nB elements form cB. Accordingly, H is
divided into four sub-blocks. We call this procedure a “matrix partitioning”.[

HAA HAB

HBA HBB

] [
cA

cB

]
= E

[
cA

cB

]
(B.2)

Or equivalently, {
HAAcA + HABcB = EcA

HBAcA + HBBcB = EcB
(B.3)

We can formally eliminate cB as follows. From the second equation,

cB = (E1BB −HBB)−1HBAcA (B.4)

By inserting this into the first equation, we obtain

HeffcA = EcA (B.5)

where
Heff ≡ HAA + HAB(E1BB −HBB)−1HBA (B.6)

In this way, the size of the matrix eigenvalue problem has been reduced from N to nA,
and Eqs (B.1) and (B.6) are still equivalent. Although the size of the matrix is reduced,
we have a price to pay: Heff contains the unknown E which complicates the problem.
Nonetheless, Eq (B.6) can be a useful starting point for various approximations. Heff

is called “Effective Hamiltonian”.
The variation-perturbation theory can be considered as a special case of the Effec-

tive Hamiltonian method, which is derived by

1. taking nA=1 (i.e., HAA=H11),

2. approximating E=H11 in Heff , and

3. neglecting the off-diagonals in HBB
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Question : Confirm that the 2nd-order variation-perturbation formula Eq (6.3) of
Sec 6 is obtained by the above procedure 1-3.

The generalization to the non-orthogonal basis, S 6= I, is straightforward. The
original eigenvalue equation

Hc = ESc (B.7)

is partitioned as [
HAA HAB

HBA HBB

] [
cA

cB

]
= E

[
SAA SAB

SBA SBB

] [
cA

cB

]
(B.8)

from which the effective Hamiltonian is derived as

HeffcA = ESAAcA (B.9)

Heff ≡ HAA + (HAB − ESAB)(ESBB −HBB)−1(HBA − ESBA) (B.10)

The non-orthogonal variation-perturbation theory is derived as

E ' H11 +
∑
k 6=1

|H1k − S1kH11|2

H11 −Hkk

+ · · · (B.11)

Question : Verify these.

C Frontier MO Theory

The summation
all∑

k∈B

of Eq (6.11) in Sec 6 runs through all of the occupied and unoc-

cupied MOs of molecule B. By removing the overlapping occupied-occupied region in
the diagram below, Eq (6.11) can be simplified as

∆E = 2(
occ∑
i∈A

uoc∑
k∈B

−
uoc∑
i∈A

occ∑
k∈B

)
|h′ik|2

Ei − Ek

(C.12)

This means that the interaction between the molecules A and B is represented by
the interactions between the occupied and unoccupied MOs. For example, the first
double summation represents interaction between the occupied MOs in molecule A
and unoccupied MOs in molecule B. This may be further approximated by taking the
smallest denominators, i.e., the HOMO-LUMO interactions to give the Frontier MO
theory of Eq (6.12) in Sec 6.
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D Energy change under electric field

The small change of energy dE of a molecule under small change of electric field dε is
given by

dE = −µ dε (D.13)

where µ is the molecular dipole moment. We need to note that the dipole moment µ
depends on the field ε as in Eq (7.1). Therefore, to evaluate the net energy change E
under the electric field E we need to carry out integration

E(E)− E(0) = −
∫ E

0

µ(ε) dε

= −
∫ E

0

(µ+ α ε+
1

2
β ε2 + · · · ) dε

= −µ E − 1

2
α E2 − 1

3!
β E3 + · · ·

(D.14)
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