On Heegaard genus, bridge genus and braid genus for a 3-manifold

Shin’ya Okazaki

We introduce the bridge genus and the braid genus as two kinds of genera of a closed connected orientable 3-manifold, and compare them with the Heegaard genus. We consider four inequalities between these three genera and we construct a 3-manifold which satisfies each one of inequalities.

Let M be a closed connected orientable 3-manifold. Then there exist handlebodies H_1 and H_2 of same genus and a homeomorphism $f : \partial H_1 \to \partial H_2$ such that $M = H_1 \cup_f H_2$. We call the triple $(H_1, H_2; f)$ a Heegaard splitting of M and we call $f(\partial H_1) = \partial H_2$ the Heegaard surface. The Heegaard genus of M is the minimal genus of Heegaard surfaces, denoted by $g_H(M)$.

Let $L = K_1 \cup K_2 \cup \cdots \cup K_n$ be an n-component link in the 3-sphere S^3, and $N(L)$ a tubular neighborhood of L, and $E(L)$ the exterior $S^3 - N(L)$ of L. Here for a set Y in a topological space X, \overline{Y} is the closure of Y in X. Let $\chi(L, 0)$ be the 3-manifold obtained from $E(L)$ by attaching n solid tori V_1, V_2, \ldots, V_n to $\partial E(L)$ such that the meridian of ∂V_i is mapped to the longitude of K_i ($1 \leq i \leq n$).

The bridge genus $g_{bridge}(M)$ (resp. the braid genus $g_{braid}(M)$) of M is the minimal number of bridge(L) (resp. braid(L)) for any L such that M is obtained by the 0-surgery of S^3 along L. The bridge genus and the braid genus are introduced by A.Kawauchi.

Theorem 0.1. Let M be a closed connected orientable 3-manifold. Then we obtain

$$g_H(M) \leq g_{bridge}(M) \leq g_{braid}(M).$$

Example 0.2. Let M be the connected sum of n copies of $S^1 \times S^2$. Then

$$g_H(M) = g_{bridge}(M) = g_{braid}(M) = n.$$

Example 0.3. For the Hopf link L, we have $\chi(L, 0)$ is homeomorphic to S^3. Then

$$0 = g_H(S^3) < g_{bridge}(S^3) = g_{braid}(S^3) = 2.$$

Example 0.4. Let K be the figure-eight knot, and $M = \chi(K, 0)$. Then

$$2 = g_H(M) = g_{bridge}(M) < g_{braid}(M) = 3.$$

Example 0.5. Let $M = \chi(8_{15}, 0)$. Then

$$g_H(M) = 2 < g_{bridge}(M) = 3 < g_{braid}(M) = 4.$$